AccScience Publishing / IJOCTA / Volume 8 / Issue 2 / DOI: 10.11121/ijocta.01.2018.00457
RESEARCH ARTICLE

Optimization of lactic acid bacteria viability using fuzzy soft set modelling

Reyhan Irkin1 Nihal Yılmaz Ozg¨ur2* Nihal Ta¸2
Show Less
1 Department of Nutrition and Dietetics, Izmir Democracy University, Turkey ˙
2 Department of Mathematics Balıkesir University, Turkey
IJOCTA 2018, 8(2), 266–275; https://doi.org/10.11121/ijocta.01.2018.00457
Submitted: 15 February 2017 | Accepted: 14 June 2018 | Published: 31 July 2018
© 2018 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Lactic acid fermented vegetables are important sources of vitamins and minerals. In recent years consumers demand for non-dairy based functional products has increased. Cabbage pickle has high enough concentrations of fiber and also it may show health effect with the containing high numbers of lactic acid bacteria. The aim of this study is to optimize mathematically cabbage-carrot pickle fermentation for the viability of Lactobacillus acidophilus, Lactobacillus casei cultures and the sensory scores in brine with 5% and 7% (w/v) salt concentrations. Viability optimization of lactic acid bacteria is done via the notion of “fuzzy soft set” method. Lb. casei, Lb. acidophilus, total lactic acid bacteria, Enterobacteriaceae sp., yeast-mould counts and pH values have been reported during the 30 days of storage. The results are compared with the control traditional fermented cabbage-carrot pickle. Organoleptic properties are evaluated. We conclude that the fermented pickle samples contain a significant number of beneficial lactic acid bacteria and high sensory marks at the end of the storage.

Keywords
Pickle
salt concentration
Lactic acid bacteria
optimization
fuzzy soft set
Conflict of interest
The authors declare they have no competing interests.
References

[1] Tokatl1, M., G¨ulg¨or, G., Elmac1, S.B., I(˙)>sleyen, N.A.,O(¨)z>celik, F. (2015). In vitro properties of potential pro-biotic indigenous lactic acid bacteria originating from traditional pickles. BioMed. Res. Int., 1, 1-8.

[2] Tamang, J.P., Tamang, B., Schillinger, U., Guigas, C., Holzapfel, W.H. (2009). Functional properties of lac- tic acid bacteria isolated from ethnic fermented veg- etables of the Himalayas. Int. J. Food Microbiol., 135, 28-33.

[3] Divya, J.B., Varsha, K.K., Madhavan, K., Ismail, N.B., Pandey, A. (2012). Probiotic fermented foods for health benefits. Eng. Life Sci., 12, 377-390.

[4] Kos, B., Suskovic, J., Beganovic, J., Gjuracic, K., Frece, J., Iannaccone, C., Canganella, F. (2008). Characterization of the three selected probioticstrains for the application in food industry. World J. Micro- biol. Biotechnol., 24, 699-707.

[5] Surh, J., Kim, Y.K.L., Kwon, H. (2008). Korean fer- mented foods: Kimchi and Doenjang. In Handbook of Fermented Functional Foods. Edward, R.; Farnworth, T., Eds.; CRC Press, US 333-353.

[6] Nagpal, R., Kumar, A., Kumar, M., Behare, P.V., Jain, S., Yadav, H. (2012). Probiotics, their health benefits and applications for developing healthier foods: a review. FEMS Microbiol. Lett., 334, 1-15.

[7] Wacher, C., Diaz-Ruiz, G., Tamang, J.P. (2010). Fer- mented Vegetable Products. In Fermented Foods and Beverages of the World; Tamang J.P. ; Kaialasapa- thy, K., Eds.; CRC Press, US 149-190.

[8] Zhou, F., Zhao, H., Bai, F., Dziugan, P., Liu, Y., Zhang, B. (2014). Purification and characterisation of the bacteriocin produced by Lactobacillus plantarum, isolated from Chinese pickle. Czech J. Food Sci., 32, 430-436.

[9] Bengmark, S. (2010). Lactic acid Bacteria and Plant Fibers: Treatment in acute and chronic human dis- ease. In Prebiotics and Probiotics ingredients, Health Benefits and Food Applications; Cho, S.S.; Finoc- chiaro, E.T., Eds.; CRC Press, US 163-192.

[10] Montet, D., Ray, R.C., Zakhia-Rozis, N. (2015). Lac- tic acid fermentation of vegetables and fruits. In Mi- croorganisms and Fermentation of Traditional Foods;Ray R.C.; Montet D., Eds.; CRC Press, US 108-141.

[11] Furtado-Martins, E.M., Ramos, A.M., Vanzela, E.S.L., Stringheta, P.C., Pinto, C.L.O., Martins, J.M.(2013). Products of vegetable origin: A new alterna- tive for the consumption of probiotic bacteria. Food Res. Int., 51, 764770.

[12] Yoon, K.Y., Woodams, E.E., Hang, Y.D. (2009). Pro- duction of probiotic cabbage juice by lactic acid bac- teria. Biores. Technol., 97, 14271430.

[13] Zhao, D., Ding, X. (2008). Studies on the low-salt Chi- nese potherb mustard (Brassica juncea, Coss.) pickle. I The efect of a homofermentative L(+) -lactic acid producer Bacillus coagulans on starter culture in the low-salt Chinese potherb mustard pickle fermentation. LWT-Food Sci. Technol., 41(3), 474-482.

[14] Penas, E., Frias, J., Sidro,B., Vidal-Valverde, C.(2010). Impact of fermentation conditions and refrig- erated storage on microbial quality and biogenic amine content of sauerkraut. Food Chem.. 123, 143-150.

[15] Lin, S.H., Li, Y. H., Leung, K., Huang, C.Y., Wang, X.R. (2014). Salt processed food and gastric cancer in a Chinese population. As. Pac. J. Cancer Prev., 15(13), 5293-5298.

[16] Kalaichelvi, A., Malini, P. H. (2011). Application of fuzzy soft sets to investment decision making problem. Int. J. Math. Sci. Appl., 1(3), 1583-1586.

[17] Y¨uksel, S., Dizman, T., Y1ld1zdan, G., Sert, U. (2013). Application of soft sets to diagnose the prostate cancer risk. J. Inequal Appl., 1, 229-240.

[18] O(¨)zg¨ur, N.Y., Tas, N. (2015). A note on “Applica-tion of Fuzzy Soft Sets to Investment Decision Making Problem” . J. New Theory., 1(7), 1-10.

[19] Maji, P.K., Biswas, R., Roy, A.R. (2002). An Applica- tion of Soft Set in a Decision Making Problem. Com- put. Math. Appl. 44(8-9), 1077-1083.

[20] Roy, A.R., Maji, P.K. (2007). A Fuzzy Soft Set Theo- retic Approach to Decision Making Problems. J. Com- put. Appl. Math., 203(2), 412-418.

[21] Ng, E.W.Y. (2009). Efect of starter cultures on Lac- tobacillus acidophilus and gene expression in yogurt. Thesis of California Polytechnic State University, San Luis Obispo, US 108 p.

[22] Oh, S., Rheem, S., Sim, J., Kim, S., Baek, Y.J.(1995). Optimizing Conditions for the Growth of Lac- tobacillus casei YIT 9018 in Tryptone-Yeast Extract- Glucose Medium by Using Response Surface Method- ology. Appl. Environ. Microbiol., 61(11), 3809-3814.

[23] Zhao, D., Tang, J., Ding, X. (2007). Analysis of volatile components during potherb mustard (Bras- sica juncea, Coss.) pickle fermentation using SPME– GC-MS. LWT-Food Sci. Technol., 40, 439-447.

[24] Inatsu, Y., Bari, M.L., Kawasaki, S., Kawamoto, S.(2005). Efectiveness of some natural antimicrobial compounds in controlling pathogen or spoilage bac- teria in lightly fermented Chinese cabbage. J. Food Sci., 70(9), 393-397.

[25] Jagannath, P., Raju, P.S., Bawa, A. S. (2012). A Two- step controlled lactic fermentation of cabbage for im- proved chemical and microbiological qualities. J. Food Qual., 35, 13-20.

[26] Maji, P.K., Biswas, R., Roy, A.R. (2001). Fuzzy Soft Sets. J. Fuzzy Math., 9, 589-602.

[27] Kearney, N., Stanton, C., Desmond, C., Coakley, M., Collins, J. K., Fitzgerald, G., Ross, R.P. (2008). Chal- lenges associated with the development of probiotic- containing Functional foods. In Handbook of Fer- mented Functional Foods; Edward, R.; Farnworth, T., Eds.; CRC Press, US 25-71.

[28] Beganovic, J., Pavunc, A. L., Gjuracic, K., Spoljarec, M., Suskovic, J., Kos, B. (2011). Improved sauerkraut production with probiotic strain Lactobacillus plan- tarum L4 and Leuconostoc mesenteroides LMG 7954. J. Food Sci. 76(2), 124-129.

[29] Xiong, T., Guan, Q., Song, S., Hao, M., Xie, M.(2012). Dynamic changes of lactic acid bacteria 丑ora during Chinese sauerkraut fermentation. Food Con- trol. 26, 178-181.

[30] Weng, P.F., Wu, Z.F., Lei, L.L. (2013). Predictive models for growth of Leuconostoc citreum and its Dy- namics in pickled vegetables with low salinity. J. Food Proces. Eng., 36, 284-291.

[31] Viander, B., Maki, M.M., Palva, A. (2003). Impact of low salt concentration, salt quality on natural large- scale sauerkraut fermentation. Food Microbiol., 20, 391-395.

[32] Cvetkovic, B.R., Pezo, L. L., Tasic, T., Saric, L., Kevresan, Z., Mastilovic, J. (2015). The optimisation of traditional fermentation process of white cabbage (in relation to biogenic amines and polyamines content and microbiological profile). Food Chem. 168, 471-477.

[33] Yoon, K.Y., Woodams, E. E., Hang, Y. D. (2005). Fer- mentation of beet juice by beneficial lactic acid bac- teria. LWT- Food Sci. Technol., 38, 73-75.

[34] Irkin, R., Songun, G.E. (2012). Applications of pro- biotic bacteria to the vegetable pickle products. Sci. Rev. Chem. Com., 2(4), 562-567.

[35] Heperkan, D. (2013). Microbiota of table olive fer- mentations and criteria of selection for their use as starters. Front. Microbiol., 4(143), 1-11.

[36] Weon, M.K., Lee, Y.J. (2013). Consumer’sperception, preference and intake frequency of Jangachi (Korean Pickle) by age for developing low salt Jangachi. Ko- rean J. Cul. Res., 19(5), 249-263.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing