AccScience Publishing / IJOCTA / Volume 7 / Issue 3 / DOI: 10.11121/ijocta.01.2017.00495
RESEARCH ARTICLE

New soliton properties to the ill-posed Boussinesq equation arising in nonlinear physical science

Serbay Duran1* Muzaffer Askin2 Tukur Abdulkadir Sulaiman3
Show Less
1 Faculty of Education, Adıyaman University, Turkey
2 Faculty of Engineering, Munzur University, Turkey
3 Faculty of Science, Fırat University, Turkey
IJOCTA 2017, 7(3), 240–247; https://doi.org/10.11121/ijocta.01.2017.00495
Submitted: 24 June 2017 | Accepted: 30 September 2017 | Published: 10 October 2017
© 2017 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

In manuscript, with the help of the Wolfram Mathematica 9, we employ the  modified exponential function method in obtaining some new soliton solutions to  the ill-posed Boussinesq equation arising in nonlinear media. Results obtained  with use of technique, and also, surfaces for soliton solutions are given. We also  plot the 3D and 2D of each solution obtained in this study by using the same  program in the Wolfram Mathematica 9.

Keywords
The MEFM
ill-posed Boussinesq equation
Trigonometric
Hyperbolic
Rational function structures
Conflict of interest
The authors declare they have no competing interests.
References

[1] Akbar, M.A., Ali, N.H.M. and Zayed, E.M.E.  (2014). Generalized and Improved  G G  /  - Expansion Method Combined with Jacobi Elliptic  Equation, Communications in Theoretical Physics,  61(6), 669.

[2] Parkes, E.J., Duy, B.R. and Abbott, P.C. (2002). The Jacobi Elliptic-Function Method for Finding  Periodic-Wave Solutions to Nonlinear Evolution  Equations, Physics Letters A, 295, 280-286.

[3] Taghizadeh, N., Mirzazadeh M., Paghaleh, A.S.  andVahidi, J. (2012). Exact Solutions of Nonlinear  Evolution Equations by Using the Modified Simple  Equation Method, Ain Shams Engineering Journal,  3 321-325.

[4] Khan,K.,Akbar, M.A. and Ali, N.H.M. (2013). TheModified Simple Equation Method for Exact and  Solitary Wave Solutions of Nonlinear Evolution  Equation: The GZK-BBM Equation and RightHanded Noncommutative Burgers Equations,  Physics Letters A, 2013, 146704.

[5] Baskonus, H.M.,Sulaiman, T.A. and Bulut, H. (2017). On the Novel Wave Behaviors to the  Coupled Nonlinear Maccari's System with Complex  Structure, Optik, 131, 1036-1043.

[6] Bulut, H., Sulaiman, T.A. and Baskonus, H.M.  (2016). New Solitary and Optical Wave Structures  to the Korteweg-de Vries Equation with DualPower Law Nonlinearity, Opt. Quant. Electron,  48(564), 1-14.

[7] Bulut, H.,Sulaiman, T.A., Baskonus, H.M. and  Sandulyak, A.A. (2017). New Solitary and Optical  Wave Structures to the (1+1)-Dimensional  Combined KdV-mKdV Equation, Optik, 135, 327- 336.

[8] Panahipour,H. (2012). Application of Extended  Tanh Method to Generalized Burgers-type  Equations, Communications in Numerical Analysis,  doi:10.5899/2012/cna-00058.

[9] Baskonus, H.M. and Bulut, H. (2016). Exponential  Prototype Structure for (2+1)-Dimensional BoitiLeon-Pempinelli systems in Mathematical Physics,  Waves in Random and Complex Media, 26(2), 189- 196.

[10] Alquran, M., Al-Khaled, K. and Ananbeh, H.  (2011). New Soliton Solutions for Systems of  Nonlinear Evolution Equations by the Rational  Sine-Cosine Method, Studies in Mathematical  Sciences, 3(1), 1-9.

[11] Tchier, F., Yusuf, A., Aliyu, A.I. and Inc, M.  (2017). Soliton Solutions and Conservation Laws  for Lossy Nonlinear Transmission Line Equation,  Superlattices and Microstructures,  doi.org/10.1016/j.spmi.2017.04.003.

[12] Hemeda, A.A. (2012). Homotopy Perturbation  Method for Solving Systems of Nonlinear Coupled  Equations, Applied Mathematical Sciences, 6(96),  4787-4800.

[13] Gao, B. and Tian, H. (2015). Symmetry Reductionsand Exact Solutions to the ill-Posed Boussinesq,  International Journal of Non-Linear Mechanics, 72,  80-83. 

[14] Ozpinar, F., Baskonus, H.M. and Bulut, H. (2015).  On the Complex and Hyperbolic Structures for the  (2+1)-Dimensional Boussinesq Water Equation,  Entropy, 17(12), 8267-8277.

[15] Baskonus, H.M. and Askin, M. (2016). Travelling  Wave Simulations to the Modified ZakharovKuzentsov Model Arising In Plasma Physics, 6th  International Youth Science Forum "LITTERIS ET  ARTIBUS"' Computer Science and Engineering,  Lviv, Ukraine, 24-26 November.

[16] Boussinesq, J. (1871). Thorie de l'intumescence  liquide, applele onde solitaire ou de translation, se  propageant dans un canal rectangulaire, Comptes  Rendus de l'Academie des Sciences, 72, 755-759.

[17] Zakharov, V.E. (1974). On Stochastization of OneDimensional Chains of Nonlinear Oscillators,  Entropy, 38(1), 108.

[18] Tchier, F., Aliyu, A.I., Yusuf A. and Inc, M.  (2017). Dynamics of solitons to the ill-posed  Boussinesq equation, The European Physical  Journal Plus, 132(136), doi:10.1140/epjp/i2017- 11430-0.

[19] Yasar, E., San, S. and Ozkan, Y.S. (2016).  Nonlinear self adjointness, conservation laws and  exact solutions of ill-posed Boussinesq equation,  Open Phys., 14, 37-43.

[20] Attili, B.S. (2006). The Adomian Decomposition Methodfor Solving the Boussinesq Equation  Arising in Water Wave Propagation, Numerical  Methods for Partial Differential Equations, 22,  1337-1347.

[21] Roshid, H.O. and Rahman, M.A. (2014). The exp - expansion method with application in the (1+1)  dimensional classical Boussinesq equations, Results  Phys., 4, 150-155.

[22] Abdelrahman, A.E., Zahran E.H.M. and Khater,  M.M.A. (2015). The exp -Expansion Method and  Its Application for Solving Nonlinear Evolution  Equations Mahmoud, Int. J. Mod. Nonlinear  Theory Appl., 4, 37-47.

[23] Hafez, M.G., Alam, M.N. and Akbar, M.A. (2014).  Application of the exp -expansion Method to Find  Exact Solutions for the Solitary Wave Equation in  an Unmagnatized Dusty Plasma, World Appl. Sci.  J., 32, 2150-2155.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing