AccScience Publishing / IJOCTA / Volume 7 / Issue 3 / DOI: 10.11121/ijocta.01.2017.00493
RESEARCH ARTICLE

Analytical solutions of Phi-four equation

Seyma Tuluce Demiray1* Hasan Bulut1
Show Less
1 Department of Mathematics, Firat University, Turkey
IJOCTA 2017, 7(3), 275–280; https://doi.org/10.11121/ijocta.01.2017.00493
Submitted: 16 June 2017 | Accepted: 16 September 2017 | Published: 7 November 2017
© 2017 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

This study bases attention on new analytical solutions of Phi-four equation. The modified exp -expansion function method (MEFM) has been used to obtain analytical solutions of the Phi-four equation. By using this method, dark soliton solutions and trigonometric function solution of the Phi-four equation have been found. 

Keywords
Phi-four equation
Modified exp Ωξ -expansion function
method
Dark soliton solutions
Trigonometric function solution
Mathematica 9
Conflict of interest
The authors declare they have no competing interests.
References

[1] Younis, M., Rizvi, S.T.R. (2015). Dispersive dark  optical soliton in (2+1)-dimensions by G’/Gexpansion with dual-power law nonlinearity.  Optik, 126, 5812-5814.

[2] Zahran, E.H.M., Khater, M.M.A. (2016). Modified extended tanh-function method and its  applications to the Bogoyavlenskii equation. Applied Mathematical Modelling, 40, 1769- 1775.

[3] Bibi, S., Mohyud-Din, S.T. (2014). Traveling  wave solutions of KdVs using sine-cosine  method. Journal of the Association of Arab  Universities for Basic and Applied Sciences, 15,  90-93.

[4] Khan, K., Akbar, M.A. (2014). Traveling wave  solutions of the (2+1)-dimensional Zoomeron  equation and the Burgers equations via the MSE  method and the Exp-function method. Ain Shams  Engineering Journal, 5, 247-256.

[5] Tuluce Demiray, S., Bulut, H. (2015). Some  Exact Solutions of Generalized Zakharov  System. Waves in Random and Complex Media,  25(1) , 75-90.

[6] Tuluce Demiray, S., Bulut, H. (2017). New  soliton solutions of Davey–Stewartson equation with power-law nonlinearity. Opt Quant  Electron, 49(117), 1-8.

[7] Baskonus, H. M., Bulut, H., Atangana, A. (2016). On the complex and hyperbolic  structures of the longitudinal wave equation in a  magneto-electro-elastic circular rod. Smart  Materials and Structures, 25(3), 1-8.

[8] Wazwaz, A.M. (2004). A sine-cosine method for  handling nonlinear wave equations. Mathematical and Computer Modelling, 40, 499- 508.

[9] Bekir, A. (2008). New Exact Travelling Wave  Solutions for Regularized Long-wave, Phi-Four and Drinfeld-Sokolov Equations. International  Journal of Nonlinear Science, 6(1), 46-52.

[10] Younis, M., Zafar, A. (2013). The modified  simple equation method for solving nonlinear  Phi-Four equation. International Journal of  Innovation and Applied Studies, 2(4), 661-664.

[11] Ehsani, F., Ehsani, F., Hadi, A., Hadi, N. (2013).  Analytical Solution of Phi-Four Equation. Technical Journal of Engineering and Applied  Sciences, 3(14), 1378-1388.

[12] Dashen, R.F., Hasslacher, B., Neveu, A. (1975)  Particle spectrum in model field theories from  semi-classical functional integral technique.  Physical Review D, 11, 3424-3450.

[13] Alam, M.N., Hafez, M.G., Akbar, M.A., Roshid,  H.O. (2015). Exact Solutions to the (2+1)- Dimensional Boussinesq Equation via  exp(Φ(η))-Expansion Method. Journal of  Scientific Research, 7(3), 1-10

[14] Roshid, H.O., Rahman, Md. A. (2014). The  exp(−Φ(η))-expansion method with application  in the (1+1)-dimensional classical Boussinesq  equations. Results in Physics, 4, 150-155.

[15] Abdelrahman, M.A.E., Zahran, E.H.M., Khater,  M.M.A. (2015). The exp(−ϕ(ξ))-Expansion  Method and Its Application for Solving  Nonlinear Evolution Equations. International  Journal of Modern Nonlinear Theory and  Application, 4, 37-47.

[16] Hafez, M.G., Alam, M.N., Akbar, M.A. (2014).  Application of the exp(−Φ(η))-expansion  Method to Find Exact Solutions for the Solitary  Wave Equation in an Unmagnatized Dusty  Plasma. World Applied Sciences Journal,  32(10), 2150-2155.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing