AccScience Publishing / IJOCTA / Volume 4 / Issue 2 / DOI: 0.11121/ijocta.01.2014.00199
OPTIMIZATION & APPLICATIONS

Optimization of nonlinear controller with an enhanced biogeography  approach

Mohammed Salem1 Mohamed Fayçal Khelfi2
Submitted: 11 March 2014 | Published: 5 June 2014
© 2014 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

This paper is dedicated to the optimization of nonlinear controllers basing of an enhanced  Biogeography Based Optimization (BBO) approach. Indeed, The BBO is combined to a predator  and prey model where several predators are used with introduction of a modified migration operator to increase the diversification along the optimization process so as to avoid local optima and reach  the optimal solution quickly. The proposed approach is used in tuning the gains of PID controller for  nonlinear systems. Simulations are carried out over a Mass spring damper and an inverted pendulum  and has given remarkable results when compared to genetic algorithm and BBO.

Keywords
Biogeography based optimization;predator and prey;PID control;nonlinear system;genetic algorithms
Conflict of interest
The authors declare they have no competing interests.
References

[1] Johnson M.A and M.H. Moradi, PID  Controllers: New Identification and Design  Methods. Springer, (2005).

[2] Teng T.K., J.S. Shieh and C.S. Chen,  Genetic algorithms applied in online auto  tuning PID parameters of a liquid-level  control system, Transaction of the Institute  of Measurement and control, 25(5), 433- 450, (2003).

[3] Fan L., and E.M. Joo, Design for Autotuning PID Controller Based on Genetic  Algorithms, In: 4th IEEE Conference on  Industrial Electronics and Applications  (ICIEA 2009), 25-27 May 2009, Xian,  China, (2009).

[4] Chiha I., N. Liouane, and P. Borne, Tuning  PID Controller Using Multiobjective Ant  Colony Optimization, Applied  Computational Intelligence and Soft  Computing, 2012(1), (2012).

[5] Wang Y.B, X. Peng and B.Z. We, A new  particle swarm optimization based autotuning of PID controller, Seventh  International Conference on Machine  Learning and Cybernetics, 12-15 Jul. 2008,  Kunming, China, (2008).

[6] Solihin M.I., L.F. Tack and M.L. Kean,  Tuning of PID Controller Using Particle  Swarm Optimization (PSO), International  Conference on Advanced Science,  Engineering and Information Technology,  Selangor, 14-15 Jan. 2011, Kuala Lumpur,  Malaysia, (2011)

[7] Salem M. and M.F. Khelfi, Application of  Biogeography based optimization in tuning a  PID controller for nonlinear systems, IEEE  International Conference on Complex  Systems (ICCS), 5-6 Nov 2012, Agadir,  Morocco, (2012).

[8] Simon.D, Biogeography-based optimization,  IEEE Transactions on Evolutionary  Computation, 12(6), 702-713, (2008)

[9] Lohokare M.R., S.S.,Pattnaik. B.K,Panigrahi  and S Das, Accelerated biogeography-based  optimization with neighborhood search for  optimization, Applied Soft Computing, 13  (5), 2318-2342, (2013).

[10] Ma H., and D. Simon, Blended  biogeography-based optimization for  constrained optimization. Engineering  Applications of Artificial Intelligence, 24  (3), 517-525 , (2011).

[11] Ma H., D. Simon, M. Fei and Z. Xie,  Variations of biogeography-based  optimization and Markov analysis,  2013. Information Sciences, 220(1), 492- 506, (2013).

[12] Sayed M.M., M.S. Saad, H.M. Emara, and  A.E.E. El-Zahab, A Novel Method for PID  Tuning Using a Modified BiogeographyBased Optimization Algorithm, In: 24th  Chinese Control and Decision Conference  (CCDC), 23-25 May 2012, Taiyuan, China,  (2012).

[13] Silva M.A.C., L. dos S. Coelho and R.Z.  Freire, Biogeography-based Optimization  approach based on Predator-Prey concepts  applied to path planning of 3- Technologies  and Factory Automation (ETFA), 13-16  Sept. 2010, Cracow, Poland, 1-8, (2010).

[14] Higashitani M., A. Ishigame, K.Yasuda,  Particle Swarm Optimization Considering  the Concept of Predator-Prey Behavior,  IEEE Congress on Evolutionary  Computation (CEC), 16-21 Jul 2006, Vancouver, Canada, 434-437, (2006). 

[15] Bagis A., Determination of the PID  Controller Parameters by Modified Genetic  Algorithm for Improved Performance,  Journal of Information Science and  Engineering, 23, 1469-1480, (2007).

[16] Kundra H., A. Kaur and V. Panchal, An  integrated approach to biogeography based  optimization with case based reasoning for  retrieving groundwater possibility, in: 8th  Annual Asian Conference and Exhibition on  Geospatial Information, Technology and  Applications, 18-20 Aug. 2009, Singapore,  (2009).

[17] Li X., A real-coded predator-prey genetic  algorithm for multiobjective optimization,  Evolutionary Multi-Criterion Optimization  Lecture Notes in Computer Science, 2632,207-221, (2003).

[18] Ovreiu M., and D. Simon, Biogeographybased optimization of neuro-fuzzy system  parameters for diagnosis of cardiac disease,  In: Genetic and Evolutionary Computation  Conference, Portland, Oregon, USA, 1235- 1242, (2010).

[19] Panchal V., P. Singh, N. Kaur, and H.  Kundra, Biogeography based satellite image  classification. International Journal of  Computer Science and Information Security,  6(2), 269-274, (2009).

[20] Simon D., A dynamic system model of  biogeo Soft Comput graphy ing -based optimization, Applied 11(8), 5652-5661, (2011)

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing