Development of a 3D-printable matrix using cellulose microfibrils/guar gum-based hydrogels and its post-printing antioxidant activity
A biomaterial ink suitable for three-dimensional (3D) printing was developed using cellulose microfibrils (CMFs, 1% w/v) and guar gum (1–7 g/100 mL CMFs), and the post-printing stability and antioxidant functionality of the borax-treated construct were investigated. Rheological analysis, Fourier transform infrared spectrometry, X-ray diffractometry, and scanning electron microscopy revealed the suitability of the two polymers to form an interpenetrating composite hydrogel that would facilitate printability. The produced composite hydrogel showed good structural, morphological, thermal, and textural properties. CMFs with 5% guar gum showing optimal surface properties and rheological properties were printed with the least dimensional errors at 50% infill density, 10 mm/s printing speed, 0.8 mm nozzle diameter, and 0.5 mm layer height. The treatment with borax showed good shape fidelity during 12 h storage. The treated construct also showed considerably increased mechanical properties and antioxidant activities in comparison with the untreated construct. A stable 3D construct suitable for a variety of applications could be produced using CMFs and guar gum-based ink.
- Fatimi A, Okoro OV, Podstawczyk D, et al. Natural hydrogel-based bio-inks for 3D bioprinting in tissue engineering: A review. Gels. 2022;8(3):179. doi: 10.3390/gels8030179
- Nocheseda CJC, Liza FP, Collera AKM, et al. 3D printing of metals using biodegradable cellulose hydrogel inks. Addit Manuf. 2021;48(Part A):102380. doi: 10.1016/j.addma.2021.102380
- Hong S, Purushothama B, Song JM. Printing-based assay and therapy of antioxidans. Antioxidants. 2020;9(11):1052. doi: 10.3390/antiox9111052
- Cleymand F, Poerio A, Mamanov A, et al. Development of novel chitosan / guar gum inks for extrusion-based 3D bioprinting: Process, printability and properties. Bioprinting. 2021;21:e00122. doi: 10.1016/j.bprint.2020.e00122
- Dai L, Cheng T, Wang Y, et al. Injectable all-polysaccharide self-assembling hydrogel: a promising scaffold for localized therapeutic proteins. Cellulose. 2019;26:6891–6901. doi: 10.1007/s10570-019-02579-7
- Ee LY, Li SFY. Recent advances in 3D printing of nanocellulose: Structure, preparation, and application prospects. Nanoscale Adv. 2021;3(5):1167–1208. doi: 10.1039/D0NA00408A
- Leppiniemi J, Lahtinen P, Paajanen A, et al. 3D-printable bioactivated nanocellulose–alginate hydrogels. ACS Appl Mater. 2017;9(26):21959–21970. doi: 10.1021/acsami.7b02756
- Firmanda A, Syamsu K, Sari YW, et al. 3D printed cellulose based product applications. Mater Chem Front. 2022;6(3):254–279. doi: 10.1039/D1QM00390A
- Mohan D, Teong ZK, Sajab MS, et al. Intact fibrillated 3D-printed cellulose macrofibrils/CaCO3 for controlled drug delivery. Polymers. 2021;13(12):1912. doi: 10.3390/polym13121912
- Xu W, Wang X, Sandler N, et al. Three-dimensional printing of wood-derived biopolymers: A review focused on biomedical applications. ACS Sustain Chem Eng. 2018;6(5):5663–5680. doi: 10.1021/acssuschemeng.7b03924
- Gao G, Du G, Sun Y, et al. Self-healable, tough, and ultrastretchable nanocomposite hydrogels based on reversible polyacrylamide/montmorillonite adsorption. ACS Appl Mater Interfaces. 2015;7(8):5029–5037. doi: 10.1021/acsami.5b00704
- Erb RM, Sander JS, Grisch R, et al. Self-shaping composites with programmable bioinspired microstructures. Nat Commun. 2013;4(1):1712. doi: 10.1038/ncomms2666
- Palem RR, Kummara MR, Kang TJ. Self-healable and dual-functional guar gum-grafted-polyacrylamidoglycolic acid-based hydrogels with nano-silver for wound dressings. Carbohydr Polym. 2019;223:115074. doi: 10.1016/j.carbpol.2019.115074
- Pugliese R, Gelain F. Characterization of elastic, thermo-responsive, self-healable supramolecular hydrogel made of self-assembly peptides and guar gum. Mater Des. 2020;186:108370. doi: 10.1016/j.matdes.2019.108370
- Thombare N, Jha U, Mishra S, et al. Guar gum as a promising starting material for diverse applications: A review. Int J Biol Macromol. 2016;88:361–372. doi: 10.1016/j.ijbiomac.2016.04.001
- Venkatesan J, Kim S, Anil S, (eds.), et al. Guar gum nanoparticles: A new paradigm in biomedical applications, in Polysaccharide Nanoparticles: Preparation and Biomedical Applications, Elsevier Inc., Amsterdam, Netherlands. 2022;119–143.
- Pan X, Wang Q, Ning D, et al. Ultraflexible self-healing guar gum-glycerol hydrogel with injectable, antifreeze, and strain-sensitive properties. ACS Biomater Sci Eng. 2018;4(9):3397−3404. doi: 10.1021/acsbiomaterials.8b00657
- Li N, Liu C, Chen W. Facile access to guar gum based supramolecular hydrogels with rapid self-healing ability and multistimuli responsive gel−sol transitions. J Agric Food Chem. 2019;67(2):746−752. doi: 10.1021/acs.jafc.8b05130
- Buj-Corral I, Bagheri A, Sivatte-Adroer M. Effect of printing parameters on dimensional error, surface roughness and porosity of FFF printed parts with grid structure. Polymers. 2021;13(8):1213. doi: 10.3390/polym13081213
- Velásquez-Cock J, Ganán P, Posada P, et al. Influence of combined mechanical treatments on the morphology and structure of cellulose nanofibrils: Thermal and mechanical properties of the resulting films. Ind Crops Prod. 2016;85:1–10. doi: 10.1016/j.indcrop.2016.02.036
- Jang JH, So BR, Yeo HJ, et al. Preparation of cellulose microfibril (CMF) from Gelidium amansii and feasibility of CMF as a cosmetic ingredient. Carbohydr Polym. 2021;257:117569. doi: 10.1016/j.carbpol.2020.117569
- Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72(1-2):248–254. doi: 10.1016/0003-2697(76)90527-3
- Lu B, Lin F, Jiang X, et al. One-pot assembly of microfibrillated cellulose reinforced PVA−borax hydrogels with self-healing and pH-responsive properties. ACS Sustain Chem Eng. 2017;5(1):948−956. doi: 10.1021/acssuschemeng.6b02279
- Chegini SP, Varshosaz J, Sadeghi HM, et al. Shear sensitive injectable hydrogels of cross-linked tragacanthic acid for ocular drug delivery: Rheological and biological evaluation. Int J Biol Macromol. 2020;165:2789–2804. doi: 10.1016/j.ijbiomac.2020.10.164
- Hamdani AM, Wani IA. Guar and locust bean gum: Composition, total phenolic content, antioxidant and antinutritional characterization. Bioact Carbohydr Diet Fibre. 2017;11:53–59. doi: 10.1016/j.bcdf.2017.07.004
- Feki A, Hamdi M, Jaballi I, et al. Conception and characterization of a multi-sensitive composite chitosan-red marine alga-polysaccharide hydrogels for insulin controlled-release. Carbohydr Polym. 2016;236:116046. doi: 10.1016/j.carbpol.2020.116046
- Varanasi S, He R, Batchelor W. Estimation of cellulose nanofiber aspect ratio from measurements of fibre suspension gel point. Cellulose. 2013;20:1885–1896. doi: 10.1007/s10570-013-9972-9
- Martínez J, Morillo E, Maqueda C, et al. Ethyl cellulose polymer microspheres for controlled release of norfluazon. Pest Manag Sci. 2001;57(8):688–694. doi: 10.1002/ps.339
- Ng HM, Sin LT, Tee TT, et al. Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos B Eng. 2015;75:176–200. doi: 10.1016/j.compositesb.2015.01.008
- Aguayo MG, Pérez AF, Reyes G, et al. Isolation and characterization of cellulose nanocrystals from rejected fibers originated in the kraft pulping process. Polymers. 2018;10(10):1145. doi: 10.3390/polym10101145
- Mecozzi M, Sturchio E. Effects of essential oil treatments on the secondary protein structure of Vicia faba: A mid-infrared spectroscopic study supported by two-dimensional correlation analysis. Spectrochim Acta A Mol Biomol Spectrosc. 2015;137:90–98. doi: 10.1016/j.saa.2014.08.020
- Horikawa Y, Clair B, Sugiyama J. Varietal difference in cellulose microfibril dimensions observed by infrared spectroscopy. Cellulose. 2008;16:1–8. doi: 10.1007/s10570-008-9252-2
- Cao X, Dingb B, Yub J, et al. Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohydr Polym. 2012;90(2):1075–1080. doi: 10.1016/j.carbpol.2012.06.046
- Baniasadi H, Madani Z, Ajdary R, et al. Ascorbic acid-loaded polyvinyl alcohol/cellulose nanofibril hydrogels as precursors for 3D printed materials. Mater Sci Eng C. 2021;130:112424. doi: 10.1016/j.msec.2021.112424
- Lundahl MJ, Berta M, Ago M, et al. Shear and extensional rheology of aqueous suspensions of cellulose nanofibrils for biopolymer-assisted filament spinning. Eur Polym J. 2018;109:367–378. doi: 10.1016/j.eurpolymj.2018.10.006
- Tanpichai S, Phoothong F, Boonmahitthisud A. Superabsorbent cellulose-based hydrogels cross-liked with borax. Sci Rep. 2022;12(1):8920. doi: 10.1038/s41598-022-12688-2
- Jena DK, Sahoo PK. Simultaneous improvement of mechanical and fire retardantproperties of synthesised biodegradable guar gum-g-poly(butyl acrylate)/montmorillonite nanocomposite. Polym Degrad Stab. 2018;31(10):37–45. doi: 10.1016/j.polymdegradstab.2018.05.020
- Kayra N, Koraltan YP, Aytekin AO. Hydrogels based on cellulose nanocomposites, in Plant and Algal Hydrogels for Drug Delivery and Regenerative Medicine, Giri TK, Ghosh B (eds.), Woodhead Publishing, Cambridge, UK, 2021;471–505.
- Bang WY, Kim DH, Kang MD, et al. Addition of various cellulosic components to bacterial nanocellulose: A comparison of surface qualities and crystalline properties. J Microbiol Biotechnol. 2021;31(10):1366–1372. doi: 10.4014/jmb.2106.06068
- Ray D, Rana AK, Bose NR, et al. Effect of guar-gum treatment on mechanical properties of vinyl ester resin matrix composites reinforced with jute yarns. J Appl Polym Sci. 2005;98(2):557–563. doi: 10.1002/app.21995
- Martín-Alfonso J, Cuadri A, Berta M, et al. Relation between concentration and shear-extensional rheology properties of xanthan and guar gum solutions. Carbohydr Polym. 2018;181:63–70. doi: 10.1016/j.carbpol.2017.10.057
- Herrada-Manchon H, Rodríguez-González DD, Fernández MA, et al. 3D printed gummies: Personalized drug dosage in a safe and appealing way. Int J Pharm. 2020;587:119687. doi: 10.1016/j.ijpharm.2020.119687
- Kuo CC, Qin H, Cheng Y, et al. An integrated manufacturing strategy to fabricate delivery system using gelatin/alginate hybrid hydrogels: 3D printing and freeze-drying. Food Hydrocoll. 2021;111:106262. doi: 10.1016/j.foodhyd.2020.106262
- Triyono J, Sukanto H, Saputra RM, et al. The effect of nozzle hole diameter of 3D printing on porosity and tensile strength parts using polylactic acid material. Open Eng. 2020;10(1):762–768. doi: 10.1515/eng-2020-0083
- Czyżewski P, Marciniak D, Nowinka B, et al. Influence of extruder’s nozzle diameter on the improvement of functional properties of 3D-printed PLA products. Polymers. 2022;14(2): 356. doi: 10.3390/polym14020356
- Adedeji OE, Choi J-Y, Park GE, et al. Formulation and characterization of an interpenetrating network hydrogel of locust bean gum and cellulose microfibrils for 3D printing. Innov Food Sci Emerg Technol. 2022;80:103086. doi: 10.1016/j.ifset.2022.103086
- Thombare N, Jha U, Mishra S, et al. Borax cross-linked guar gum hydrogels as potential adsorbents for water purification. Carbohydr Polym. 2017;168:274–281. doi: 10.1016/j.carbpol.2017.03.086
- Kundu S, Abdullah MF, Das A, et al. Antifungal ouzo nanoparticles from guar gum propionate. RSC Adv. 2016;6(108):108. doi: 106563-106571.
- Goel N, Sinha N, Kumar B. Growth and properties of sodium tetraborate decahydrate single crystals. Mater Res Bul. 2013;48(4):1632–1636. doi: 10.1016/j.materresbull.2013.01.007
- Wang Y, Pan S, Hou X, et al. Non-centrosymmetric sodium borate: Crystal growth, characterization and properties on Na2B4O12H10. Solid State Sci. 2010;12(10):1726–1730. doi: 10.1016/j.solidstatesciences.2010.07.021
- Xia H, Ren M, Zou Y, et al. Novel biocompatible polysaccharide-based eutectogels with tunable rheological, thermal, and mechanical properties: The role of water. Molecules. 2020;25(15):3314. doi: 10.3390/molecules25153314
- 52. Chen J, Yang J, Ma L, et al. Structure-antioxidant activity relationship of methoxy, phenolic, hydroxyl, and carboxylic acid groups of phenolic acids. Sci Rep. 2022; 10(1):2611. doi: 10.1038/s41598-020-59451-z