AccScience Publishing / IJB / Volume 10 / Issue 4 / DOI: 10.36922/ijb.3444
RESEARCH ARTICLE

Polyvinyl alcohol-silk fibroin composite stents: A comprehensive investigation into biocompatibility and mechanical performance

Enric Casanova-Batlle1 Maria Ros2 Emma Polonio-Alcalá2 Sira Ausellé-Bosch2 Teresa Puig2 Antonio Guerra3 Joaquim Ciurana1*
Show Less
1 Department of Mechanical Engineering and Industrial Construction, Escola Politècnica Superior, University of Girona, Girona, Catalunya, Spain
2 Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Catalunya, Spain
3 AMS Department, Eurecat, Technology Centre of Catalonia, Cerdanyola del Vallès, Spain
IJB 2024, 10(4), 3444 https://doi.org/10.36922/ijb.3444
Submitted: 18 April 2024 | Accepted: 22 May 2024 | Published: 10 July 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Bioresorbable stents (BRS) are manufactured using biodegradable materials. As an alternative to those commonly used in commercial stents, this study explored the development of BRS using polyvinyl alcohol (PVA) and silk fibroin (SF). PVA is a promising material for the fabrication of BRS due to its biocompatibility and mechanical attributes, closely resembling those of aortic vessels. However, its application presents challenges in terms of cell adhesion and proliferation. SF has been extensively studied for its potential to enhance cell adhesion and proliferation, making it a promising biomaterial in the field of medical devices. SF was introduced by dissolving it in a PVA solution or by coating the hydrogel surface with a layer of SF. Initial tests revealed that overnight incubation of fetal bovine serum significantly increased cell viability in hydrogels. Viability assays confirmed that SF substantially improved cell viability compared to PVA alone. The method was extended to fabricate SF-coated stents, which demonstrated robust cell proliferation and improved performance compared to electrospun polycaprolactone scaffolds. In addition, the SF-coated stents displayed an increase in compressive strength, demonstrating improved biocompatibility and mechanical performance. Dynamic mechanical analysis evaluated the positive impact of SF on stent properties at physiological temperatures. The study revealed that PVA-SF stents offer a compromise between biocompatibility, mechanical strength, and elastic recovery, positioning them as a valuable alternative for cardiovascular stent applications. The dual benefits of enhanced biocompatibility and improved mechanical performance make SF-coated stents promising candidates for bioresorbable stent design.  

Keywords
Silk fibroin
Polyvinyl alcohol
Cardiovascular
Stent
Funding
The authors gratefully acknowledge the support of the Generalitat de Catalunya through the project BASE3D 001- P-001646, which is co-financed by the European Union Regional Development Fund under the ERDF Operational Program of Catalonia 2014-2020 with a grant of 50% of the total eligible cost. The authors would also like to thank the Generalitat de Catalunya and the European Union for the predoctoral grant FI AGUR 2021FI_B 00363.
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Zong J, He Q, Liu Y, Qiu M, Wu J, Hu B. Advances in the development of biodegradable coronary stents: a translational perspective. Mater Today Bio. 2022;16:100368. doi: 10.1016/J.MTBIO.2022.100368
  2. Guerra AJ, Ciurana J. Three-dimensional tubular printing of bioabsorbable stents: the effects process parameters have on in vitro degradation. 3D Print Additive Manuf. 2019;6(1):50-56. doi: 10.1089/3DP.2018.0020
  3. Paunović N, Bao Y, Coulter FB, et al. Digital light 3D printing of customized bioresorbable airway stents with elastomeric properties. Sci Adv. 2021;7(6):eabe9499. doi: 10.1126/SCIADV.ABE9499
  4. Finazzi V, Berti F, Guillory RJ, Petrini L, Previtali B, Demir AG. Patient-specific cardiovascular superelastic NiTi stents produced by laser powder bed fusion. Procedia CIRP. 2022;110(C):242-246. doi: 10.1016/J.PROCIR.2022.06.044
  5. Hua W, Shi W, Mitchell K, et al. 3D printing of biodegradable polymer vascular stents: a review. Chin J Mech Eng Addit Manuf Front. 2022;1(2):100020. doi: 10.1016/J.CJMEAM.2022.100020
  6. Chausse V, Schieber R, Raymond Y, et al. Solvent-cast direct-writing as a fabrication strategy for radiopaque stents. Addit Manuf. 2021;48:102392. doi: 10.1016/J.ADDMA.2021.102392
  7. Chausse V, Casanova-Batlle E, Canal C, Ginebra MP, Ciurana J, Pegueroles M. Solvent-cast direct-writing and electrospinning as a dual fabrication strategy for drug-eluting polymeric bioresorbable stents. Addit Manuf. 2023;71:103568. doi: 10.1016/J.ADDMA.2023.103568
  8. Casanova-Batlle E, Guerra AJ, Ciurana J. Continuous based direct ink write for tubular cardiovascular medical devices. Polymers (Basel). 2020;13(1):1-16. doi: 10.3390/POLYM13010077
  9. Lin MC, Lou CW, Lin JY, Lin TA, Chen YS, Lin JH. Biodegradable polyvinyl alcohol vascular stents: structural model and mechanical and biological property evaluation. Mater Sci Eng C Mater Biol Appl. 2018;91:404-413. doi: 10.1016/J.MSEC.2018.05.030
  10. Rizwan M, Yao Y, Gorbet MB, et al. One-pot covalent grafting of gelatin on poly(vinyl alcohol) hydrogel to enhance endothelialization and hemocompatibility for synthetic vascular graft applications. ACS Appl Bio Mater. 2020;3(1):693-703. doi: 10.1021/ACSABM.9B01026/ASSET/IMAGES/LARGE/ MT9B01026_0007.JPEG
  11. Marei I, Ahmetaj-Shala B, Triggle CR. Biofunctionalization of cardiovascular stents to induce endothelialization: implications for in-stent thrombosis in diabetes. Front Pharmacol. 2022;13:982185. doi: 10.3389/FPHAR.2022.982185
  12. Habib A, Finn AV. Endothelialization of drug eluting stents and its impact on dual anti-platelet therapy duration. Pharmacol Res. 2015;93:22-27. doi: 10.1016/J.PHRS.2014.12.003
  13. Koyano T, Minoura N, Nagura M, Kobayashi KI. Attachment and growth of cultured fibroblast cells on PVA/chitosan-blended hydrogels. J Biomed Mater Res. 1998;39:486-490. doi: 10.1002/(SICI)1097-4636(19980305)39:3
  14. Ino JM, Chevallier P, Letourneur D, Mantovani D, Visage C Le. Plasma functionalization of poly(vinyl alcohol) hydrogel for cell adhesion enhancement. Biomatter. 2013;3(4):e25414. doi: 10.4161/BIOM.25414
  15. Hou R, Wang Y, Han J, et al. Structure and properties of PVA/ silk fibroin hydrogels and their effects on growth behavior of various cell types. Mater Res Express. 2020;7(1):015413. doi: 10.1088/2053-1591/AB69C4
  16. Reizabal A, Costa CM, Pérez-Álvarez L, Vilas-Vilela JL, Lanceros-Méndez S. Silk fibroin as sustainable advanced material: material properties and characteristics, processing, and applications. Adv Funct Mater. 2023;33(3): 2210764. doi: 10.1002/ADFM.202210764
  17. Vettori L, Sharma P, Rnjak-Kovacina J, Gentile C. 3D bioprinting of cardiovascular tissues for in vivo and in vitro applications using hybrid hydrogels containing silk fibroin: state of the art and challenges. Curr Tissue Microenviron Rep. 2020;1(4):261-276. doi: 10.1007/S43152-020-00026-5
  18. Thurber AE, Omenetto FG, Kaplan DL. In vivo bioresponses to silk proteins. Biomaterials. 2015;71:145-157. doi: 10.1016/J.BIOMATERIALS.2015.08.039
  19. Casanova-Batlle E, Montero-Coedo S, Bosch A, Guerra AJ, Ciurana J. Feasibility assessment of polyvinyl alcohol-based bioresorbable cardiovascular stents manufactured via solvent-cast direct writing extrusion. Polym Test. 2024;134:108440. doi: 10.1016/J.POLYMERTESTING.2024.108440
  20. Sun W, Gregory DA, Tomeh MA, Zhao X. Silk fibroin as a functional biomaterial for tissue engineering. Int J Mol Sci. 2021;22(3):1-28. doi: 10.3390/IJMS22031499
  21. Rajesha Shetty G, Lakshmeesha Rao B. Preparation and characterization of silk fibroin-polyvinyl alcohol (PVA) blend films for food packaging materials. Mater Today Proc. 2022;55:194-200. doi: 10.1016/J.MATPR.2022.02.034
  22. Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc. 2011;6(10):1612-1631. doi: 10.1038/nprot.2011.379
  23. Marelli B, Brenckle MA, Kaplan DL, Omenetto FG. Silk fibroin as edible coating for perishable food preservation. Sci Rep. 2016;6:25263. doi: 10.1038/SREP25263
  24. Casanova-Batlle E, Guerra AJ, Ciurana J. Characterization of direct ink write pure silk fibroin based on alcohol post-treatments. Polym Test. 2022;116:107784. doi: 10.1016/J.POLYMERTESTING.2022.107784
  25. Polonio-alcalá E, Rabionet M, Ruiz-martínez S, et al. Polycaprolactone electrospun scaffolds produce an enrichment of lung cancer stem cells in sensitive and resistant egfrm lung adenocarcinoma. Cancers (Basel). 2021;13(21):5320. doi: 10.3390/CANCERS13215320
  26. ISO 25539-2:2020 - Cardiovascular Implants — Endovascular Devices — Part 2: Vascular Stents. Accessed June 21, 2023. https://www.iso.org/standard/69835.html
  27. Schmedlen RH, Masters KS, West JL. Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials. 2002;23(22):4325-4332. doi: 10.1016/S0142-9612(02)00177-1
  28. Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ. Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng. 2005;11(1-2):1-18. doi: 10.1089/TEN.2005.11.1
  29. Paul B, Lode A, Placht AM, et al. Cell-material interactions in direct contact culture of endothelial cells on biodegradable iron-based stents fabricated by laser powder bed fusion and impact of ion release. ACS Appl Mater Interfaces. 2022;14(1):439-451. doi: 10.1021/ACSAMI.1C21901
  30. Verdanova M, Sauerova P, Hempel U, Kalbacova MH. Initial cell adhesion of three cell types in the presence and absence of serum proteins. Histochem Cell Biol. 2017;148(3):273-288. doi: 10.1007/S00418-017-1571-7
  31. Jacobsen MM, Li D, Gyune Rim N, Backman D, Smith ML, Wong JY. Silk-fibronectin protein alloy fibres support cell adhesion and viability as a high strength, matrix fibre analogue. Sci Rep. 2017;7(1):1-11. doi: 10.1038/srep45653
  32. Smetana K. Cell biology of hydrogels. Biomaterials. 1993;14(14):1046-1050. doi: 10.1016/0142-9612(93)90203-E
  33. Lyu Y, Liu Y, He H, Wang H. Application of silk-fibroin-based hydrogels in tissue engineering. Gels. 2023;9(5):431. doi: 10.3390/GELS9050431
  34. Li X, Qin J, Ma J. Silk fibroin/poly (vinyl alcohol) blend scaffolds for controlled delivery of curcumin. Regen Biomater. 2015;2(2):97-105. doi: 10.1093/RB/RBV008
  35. Jin D, Takai S, Li Z, et al. Outside fibroblasts play a key role in the development of inner neointima after the implantation of polytetrafluoroethylene grafts. J Pharmacol Sci. 2012;119(2):139-149. doi: 10.1254/JPHS.11242FP
  36. Wang GX, Deng XY, Tang CJ, et al. The adhesive properties of endothelial cells on endovascular stent coated by substrates of poly-l-lysine and fibronectin. Artif Cells Blood Substit Immobil Biotechnol. 2006;34(1):11-25. doi: 10.1080/10731190500428283
  37. Shirota T, Yasui H, Shimokawa H, Matsuda T. Fabrication of endothelial progenitor cell (EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue. Biomaterials. 2003;24(13):2295-2302. doi: 10.1016/S0142-9612(03)00042-5
  38. Weber J, Weber M, Feile A, Schlensak C, Avci-Adali M. Development of an in vitro blood vessel model using autologous endothelial cells generated from footprint-free hipscs to analyze interactions of the endothelium with blood cell components and vascular implants. Cells. 2023;12(9):1217. doi: 10.3390/CELLS12091217
  39. Guerra AJ, Cano P, Rabionet M, Puig T, Ciurana J. 3D-printed PCL/PLA composite stents: towards a new solution to cardiovascular problems. Materials (Basel). 2018;11(9):1679. doi: 10.3390/MA11091679
  40. Chausse V, Mas-Moruno C, Martin-Gómez H, et al. Functionalization of 3D printed polymeric bioresorbable stents with a dual cell-adhesive peptidic platform combining RGDS and YIGSR sequences. Biomater Sci. 2023;11(13):4602-4615. doi: 10.1039/D3BM00458A
  41. Kang CK, Lim WH, Kyeong S, et al. Fabrication of biofunctional stents with endothelial progenitor cell specificity for vascular re-endothelialization. Colloids Surf B Biointerfaces. 2013;102:744-751. doi: 10.1016/J.COLSURFB.2012.09.008
  42. Tenekecioglu E, Torii R, Bourantas C, et al. The effect of strut thickness on shear stress distribution in a preclinical model. Int J Cardiovasc Imaging. 2017;33(11):1675-1676. doi: 10.1007/S10554-017-1173-4
  43. Ding C, Ma J, Teng Y, Chen S. The effect of plasma treatment on the mechanical and biological properties of polyurethane artificial blood vessel. Materials (Basel). 2023;16(22):7231. doi: 10.3390/MA16227231
  44. Yang CC, Lee YJ. Preparation of the acidic PVA/MMT nanocomposite polymer membrane for the direct methanol fuel cell (DMFC). Thin Solid Films. 2009;517(17): 4735-4740. doi: 10.1016/J.TSF.2009.03.138
  45. Yuan Q, Yao J, Chen X, Huang L, Shao Z. The preparation of high performance silk fiber/fibroin composite. Polymer (Guildf). 2010;51(21):4843-4849. doi: 10.1016/J.POLYMER.2010.08.042
  46. Niu C, Li X, Wang Y, Liu X, Shi J, Wang X. Design and performance of a poly(vinyl alcohol)/silk fibroin enzymatically crosslinked semi-interpenetrating hydrogel for a potential hydrophobic drug delivery. RSC Adv. 2019;9(70):41074-41082. doi: 10.1039/C9RA09344C
  47. Wang X, Yucel T, Lu Q, Hu X, Kaplan DL. Silk nanospheres and microspheres from silk/pva blend films for drug delivery. Biomaterials. 2010;31(6):1025-1035. doi: 10.1016/J.BIOMATERIALS.2009.11.002
  48. Bosch A, Casanova-Batlle E, Rodríguez-Rego JM, Ciurana J, Guerra AJ. Silk fibroin dip coating as drug delivery material for medical devices. Key Eng Mater. 2023;957:113-121. doi: 10.4028/P-P004JO
  49. Chausse V, Iglesias C, Bou-Petit E, Ginebra MP, Pegueroles M. Chemical vs thermal accelerated hydrolytic degradation of 3D-printed PLLA/PLCL bioresorbable stents: Characterization and influence of sterilization. Polym Test. 2023;117:107817. doi: 10.1016/J.POLYMERTESTING.2022.107817
  50. Wu Z, Zhao J, Wu W, et al. Radial compressive property and the proof-of-concept study for realizing self-expansion of 3D printing polylactic acid vascular stents with negative Poisson’s ratio structure. Materials (Basel). 2018; 11(8):1357. doi: 10.3390/MA11081357
  51. Chelazzi D, Badillo-Sanchez D, Giorgi R, Cincinelli A, Baglioni P. Self-regenerated silk fibroin with controlled crystallinity for the reinforcement of silk. J Colloid Interface Sci. 2020;576:230-240. doi: 10.1016/J.JCIS.2020.04.114
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing