AccScience Publishing / IJB / Volume 10 / Issue 3 / DOI: 10.36922/ijb.3189
RESEARCH ARTICLE

Development of a five-axis printer for the fabrication of hybrid 3D scaffolds: From soft to hard phases and planar to curved surfaces

Michael Kainz1* Isabel Caetano da Silva1 Paula Schumann1 Julia Kastner1 Thomas Voglhuber1 Lukas Hartung2 Sandra Haas1 Milan Rathod1 Adrián Martínez Cendrero3 Tilo Dehne4 Daniel Seitz5 Gunpreet Oberoi6,7 Erik Kornfellner6 Andrés Díaz Lantada3 Francesco Moscato6,8,9 Elena Guillén1*
Show Less
1 Functional Surfaces and Nanostructures, Profactor GmbH, Steyr-Gleink, Upper Austria, Austria
2 Machine Vision, Profactor GmbH, Steyr-Gleink, Upper Austria, Austria
3 Department of Mechanical Engineering, Polytechnic University of Madrid, Madrid, Spain
4 Laboratory for Tissue Engineering, Department of Rheumatology and Clinical Immunology, Charité - University Medicine Berlin, Berlin, Germany
5 Laboratory of Additive Manufacture and Material Science, BioMed Center Innovation gGmbH, Bayreuth, Germany
6 Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
7 Austrian Center for Medical Innovation and Technology (ACMIT GmbH), Wiener Neustadt, Austria
8 Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
9 Austrian Cluster for Tissue Regeneration, Vienna, Austria
IJB 2024, 10(3), 3189 https://doi.org/10.36922/ijb.3189
Submitted: 17 March 2024 | Accepted: 9 April 2024 | Published: 14 June 2024
© 2024 by the Author(s).. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Three-dimensional (3D) printing of hybrid scaffolds with material gradients, combining soft and hard phases, is an appealing frontier in additive manufacturing. However, most 3D printers are limited to either three-axis or mono-material capabilities, rendering them unsuitable for fabricating hybrid scaffolds. Additionally, printing on curved surfaces requires advanced printing capabilities. Our work aims to advance additive manufacturing by developing a hybrid piezoelectric inkjet-extrusion printer equipped with five-axis functionalities. The printer could be used to fabricate customized hybrid scaffolds, surpassing conventional mono-material or linear three-axis printing strategies. The soft phase comprises a low-viscosity photocurable resin and a high-viscosity peptide hydrogel, while the hard phase comprises 3D-printed polylactic acid and hydroxyapatite parts. To validate the system, we fabricated three hybrid scaffolding use cases, characterized by multi-material porous structures fabricated on planar, single-curved, and free-form surfaces. The scaffolds were subsequently analyzed using digital microscopy to assess their accuracy, particularly the feature sizes of pores and struts (i.e., 0.8–3.6 mm). In the first part of the study, we demonstrated the versatility of inkjet and extrusion printing by hybrid printing an interconnected network in the soft phase on top of a planar ceramic hard phase. A pore width and height deviation of 6% was achieved compared to the intended design. In the second part of the study, we evaluated the 3D inkjet printing of a multi-material porous scaffold on a single-curved surface for osteochondral defects. The circumferential pore width and radial pore height deviated by 0.8% and 2%, respectively. Finally, we inkjet-printed a mesh structure on a free-form surface, which acted as a membrane for palatal implants. In this case, the pore width deviations were -16% in the printing direction and 2% perpendicular to the printing direction.

Keywords
Hybrid 3D printing
Hybrid scaffolds
Non-planar inkjet printing
Funding
This work was supported by the European Union’s Horizon 2020 Research and Innovation Program (Grant number: 953134; INKplant: Ink-based hybrid multi-material fabrication of next-generation implants).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Gleadall A, Visscher D, Yang J, Thomas D, Segal J. Review of additive manufactured tissue engineering scaffolds: relationship between geometry and performance. Burns Trauma. 2018;6:19. doi: 10.1186/s41038-018-0121-4
  2. Seidi A, Ramalingam M, Elloumi-Hannachi I, Ostrovidov S, Khademhosseini A. Gradient biomaterials for soft-to-hard interface tissue engineering. Acta Biomater. 2011;7(4): 1441-1451. doi: 10.1016/j.actbio.2011.01.011
  3. Wang C, Huang W, Zhou Y, et al. 3D printing of bone tissue engineering scaffolds. Bioact Mater. 2020;5(1):82-91. doi: 10.1016/j.bioactmat.2020.01.004
  4. Truby RL, Lewis JA. Printing soft matter in three dimensions. Nature. 2016;540(7633):371-378. doi: 10.1038/nature21003
  5. Haglin JM, Eltorai AEM, Gil JA, Marcaccio SE, Botero- Hincapie J, Daniels AH. Patient-specific orthopaedic implants. Orthop Surg. 2016;8(4):417-424. doi: 10.1111/os.12282
  6. Bittner SM, Guo JL, Melchiorri A, Mikos AG. Three-dimensional printing of multilayered tissue engineering scaffolds. Mater Today. 2018;21(8):861-874. doi: 10.1016/J.MATTOD.2018.02.006
  7. Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials. 2003;24(1):181-194. doi: 10.1016/S0142-9612(02)00276-4
  8. Lantada AD, Iniesta HA, Garcia-Ruiz JP. Composite scaffolds for osteochondral repair obtained by combination of additive manufacturing, leaching processes and hMSC-CM functionalization. Mater Sci Eng C. 2016;59:218-227. doi: 10.1016/j.msec.2015.10.015
  9. Sänger JC, Schwentenwein M, Bermejo R, Günster J. Hybridizing lithography-based ceramic additive manufacturing with two-photon-polymerization. Appl Sci (Basel). 2023;13(6). doi: 10.3390/app13063974
  10. Gonzalez-Pujana A, Carranza T, Santos-Vizcaino E, et al. Hybrid 3D printed and electrospun multi-scale hierarchical polycaprolactone scaffolds to induce bone differentiation. Pharmaceutics. 2022;14(12). doi: 10.3390/pharmaceutics14122843
  11. Choi WS, Kim JH, Ahn CB, et al. Development of a multi-layer skin substitute using human hair keratinic extract-based hybrid 3D printing. Polymers (Basel). 2021;13(16):2584. doi: 10.3390/polym13162584
  12. Altunbek M, Afghah SF, Fallah A, Acar AA, Koc B. Design and 3D printing of personalized hybrid and gradient structures for critical size bone defects. ACS Appl Bio Mater. 2023;6(5):1873-1885. doi: 10.1021/acsabm.3c00107
  13. Milojević M, Harih G, Vihar B, et al. Hybrid 3D printing of advanced hydrogel-based wound dressings with tailorable properties. Pharmaceutics. 2021;13(4):564. doi: 10.3390/pharmaceutics13040564
  14. Stögerer J, Baumgartner S, Hochwallner A, Stampfl J. Bio-inspired toughening of composites in 3D-printing. Materials (Basel). 2020;13(21). doi: 10.3390/ma13214714
  15. Lee HR, Park JA, Kim S, Jo Y, Kang D, Jung S. 3D microextrusion-inkjet hybrid printing of structured human skin equivalents. Bioprinting. 2021;22:e00143. doi: 10.1016/j.bprint.2021.e00143
  16. Jaksa L, Pahr D, Kronreif G, Lorenz A. Development of a multi-material 3D printer for functional anatomic models. Int J Bioprint. 2021;7(4):420. doi: 10.18063/ijb.v7i4.420
  17. Tashman JW, Shiwarski DJ, Feinberg AW. Development of a high-performance open-source 3D bioprinter. Sci Rep. 2022;12(1):22652. doi: 10.1038/s41598-022-26809-4
  18. Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1(9):e1500758. doi: 10.1126/sciadv.1500758
  19. Pusch K, Hinton TJ, Feinberg AW. Large volume syringe pump extruder for desktop 3D printers. HardwareX. 2018;3:49-61. doi: 10.1016/j.ohx.2018.02.001
  20. Mirdamadi E, Tashman JW, Shiwarski DJ, Palchesko RN, Feinberg AW. FRESH 3D bioprinting a full-size model of the human heart. ACS Biomater Sci Eng. 2020;6(11): 6453-6459. doi: 10.1021/acsbiomaterials.0c01133
  21. Khani N, Nadernezhad A, Bartolo P, Koc B. Hierarchical and spatial modeling and bio-additive manufacturing of multi-material constructs. CIRP Annals. 2017;66(1):229-232. doi: 10.1016/j.cirp.2017.04.132
  22. Hong F, Hodges S, Myant C, Boyle DE. Open5x: accessible 5-axis 3D printing and conformal slicing. Ext Abstr Hum Factors Computing Syst. 2022. doi: 10.1145/3491101.3519782
  23. Sheng YT, Liong S, Wang SY, Gan YS. 3D printing on freeform surface: real-time and accurate 3D dynamic dense surface reconstruction with HoloLens and displacement measurement sensors. Adv Mech Eng. 2023;15(1):168781322211484. doi: 10.1177/16878132221148404
  24. Arango I, Cifuentes C. Design to achieve accuracy in ink-jet cylindrical printing machines. Machines. 2019;7(1):6. doi: 10.3390/machines7010006
  25. Arango I, Bonil L, Posada D, Arcila J. Prediction of a flying droplet landing over a non-flat substrates for ink-jet applications. Int J Interact Des Manuf. 2019;13:967-980 doi: 10.1007/s12008-019-00547-w
  26. Fechtig D. Robot-based direct digital printing on freeform surfaces. In: Zapka W, ed. Inkjet Printing in Industry. Weinheim: Wiley-VCH; 2022:1269-1297. doi: 10.1002/9783527828074.CH55
  27. Thalheim R, Willert A, Mitra D, Zichner R. Novel and efficient methodology for drop placement accuracy testing of robot-guided inkjet printing onto 3D objects. Machines. 2023;11(5):568. doi: 10.3390/machines11050568
  28. Shen H, Liu B, Liu S, Fu J. Five-axis freeform surface color printing technology based on offset curve path planning method. Appl Sci (Basel). 2020;10(5):1716. doi: 10.3390/app10051716
  29. Gazeau JP, Said Z, Ramírez-Torres J. A novel 5-axis robot for printing high resolution pictures from media on 3D wide surfaces. Proceedings of the IEEE International Conference on Industrial Technology. 2009:1-6. doi: 10.1109/ICIT.2009.4939735
  30. Urasinska-Wojcik B, Chilton N, Todd P, et al. Integrated manufacture of polymer and conductive tracks for real-world applications. Addit Manuf. 2019;29:100777. doi: 10.1016/j.addma.2019.06.028
  31. Moroni L, Boland T, Burdick JA, et al. Biofabrication: a guide to technology and terminology. Trends Biotechnol. 2018;36(4):384-402. doi: 10.1016/j.tibtech.2017.10.015
  32. Kainz M, Perak S, Stubauer G, et al. Additive and lithographic manufacturing of biomedical scaffold structures using a versatile thiol-ene photocurable resin. Polymers (Basel). 2024;16(5):655. doi: 10.3390/polym16050655
  33. Arosio P, Owczarz M, Wu H, Butté A, Morbidelli M. End-to-end self-assembly of RADA 16-I nanofibrils in aqueous solutions. Biophys J. 2012;102(7): 1617-1626. doi: 10.1016/j.bpj.2012.03.012
  34. Sankar S, O’Neill K, Bagot D’Arc M, et al. Clinical use of the self-assembling peptide RADA16: a review of current and future trends in biomedicine. Front Bioeng Biotechnol. 2021;9. doi: 10.3389/fbioe.2021.679525
  35. Wong KC. 3D-printed patient-specific applications in orthopedics. Orthop Res Rev. 2016;8:57-66. doi: 10.2147/ORR.S99614
  36. Mobbs RJ, Coughlan M, Thompson R, Sutterlin CE, Phan K. The utility of 3D printing for surgical planning and patient-specific implant design for complex spinal pathologies: case report. J Neurosurg. 2017;26(4):513-518. doi: 10.13140/RG.2.2.18087.75686
  37. Lawrence S. Developable surfaces: their history and application. Nexus Netw J. 2011;13(3):701-714. doi: 10.1007/s00004-011-0087-z
  38. Baselga S, Olsen M. Approximations, errors, and misconceptions in the use of map projections. Math Probl Eng. 2021;2021:1-12. doi: 10.1155/2021/1094602
  39. Roach BL, Hung CT, Cook JL, Ateshian GA, Tan AR. Fabrication of tissue engineered osteochondral grafts for restoring the articular surface of diarthrodial joints. Methods. 2015;84:103-108. doi: 10.1016/j.ymeth.2015.03.008
  40. Woodfield TBF, Guggenheim M, von Rechenberg B, Riesle J, van Blitterswijk CA, Wedler V. Rapid prototyping of anatomically shaped, tissue-engineered implants for restoring congruent articulating surfaces in small joints. Cell Prolif. 2009;42(4):485-497. doi: 10.1111/j.1365-2184.2009.00608.x
  41. Guilak F, Estes BT, Moutos FT. Functional tissue engineering of articular cartilage for biological joint resurfacing-The 2021 Elizabeth Winston Lanier Kappa Delta Award. J Orthop Res. 2022;40(8):1721-1734. doi: 10.1002/jor.25223
  42. Kilian D, Ahlfeld T, Akkineni AR, Bernhardt A, Gelinsky M, Lode A. 3D bioprinting of osteochondral tissue substitutes – in vitro-chondrogenesis in multi-layered mineralized constructs. Sci Rep. 2020;10(1):8277. doi: 10.1038/s41598-020-65050-9
  43. Fudalej P, Katsaros C, Dudkiewicz Z, et al. Dental arch relationships following palatoplasty for cleft lip and palate repair. J Dent Res. 2012;91(1):47-51. doi: 10.1177/0022034511425674
  44. Figueroa AA, Murphy J, Tragos C. Intra-lesional injection of triamcinolone to palatoplasty scar to aid reversal of transverse maxillary relapse after orthognathic surgery. J Craniofac Surg. 2022;33(4):e416-e418. doi: 10.1097/SCS.0000000000008347
  45. Ren Y, Fan L, Alkildani S, et al. Barrier membranes for guided bone regeneration (GBR): a focus on recent advances in collagen membranes. Int J Mol Sci. 2022;23(23):14987. doi: 10.3390/ijms232314987
  46. Tayebi L, Rasoulianboroujeni M, Moharamzadeh K, Almela TKD, Cui Z, Ye H. 3D-printed membrane for guided tissue regeneration. Mater Sci Eng C. 2018;84: 148-158. doi: 10.1016/j.msec.2017.11.027
  47. Vahdatinia F, Hooshyarfard A, Jamshidi S, et al. 3D-printed soft membrane for periodontal guided tissue regeneration. Materials (Basel). 2023;16(4). doi: 10.3390/ma16041364
  48. Jang TS, Park SJ, Lee JE, et al. Topography-supported nanoarchitectonics of hybrid scaffold for systematically modulated bone regeneration and remodeling. Adv Funct Mater. 2022;32:2206863. doi: 10.1002/adfm.202206863
  49. Liang J, Zeng H, Qiao L, et al. 3D printed piezoelectric wound dressing with dual piezoelectric response models for scar-prevention wound healing. ACS Appl Mater Interfaces. 2022;14(27):30507-30522. doi: 10.1021/acsami.2c04168

 

 




Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing