AccScience Publishing / IJB / Volume 10 / Issue 4 / DOI: 10.36922/ijb.1896
Cite this article
112
Download
1689
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Unique benefits and challenges of 3D-printed microneedles

Xinyu Fu1 Jun Gu2 Meng Ma3 Ruiqi Liu4 Siwei Bi4 Xiaosheng Zhang1* Yi Zhang1*
Show Less
1 School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
2 Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
3 School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
4 Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
IJB 2024, 10(4), 1896 https://doi.org/10.36922/ijb.1896
Submitted: 22 September 2023 | Accepted: 1 December 2023 | Published: 6 March 2024
© 2024 by the Author(s).. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Microneedles, which are used in minimally invasive transdermal drug delivery, have tremendous application potential in the fields of biosensing, disease diagnosis, bioelectrical signal detection, and wound management. Although manufacturing methods for microneedles are technically well-established, continuously evolving scientific and clinical applications require more intricate and bespoke microneedle structures that cannot be fabricated using conventional techniques. Three-dimensional (3D) printing is an advanced manufacturing technology capable of automatically fabricating microneedles with intricate structures. This review provides a comprehensive overview of 3D printing methods and, materials, as well as the mechanical properties and biocompatibility of 3D-printed microneedles, with a particular focus on their inherent advantages and limitations. This offers insights into future trends and strategies for expediting the clinical adoption and commercialization of 3D-printed microneedles.

Keywords
3D printing
Microneedles
Biosensing
Biocompatibility
Drug Delivery
Funding
This work was financially supported by the National Natural Science Foundation of China (Nos. 62271107 and 62074029), the National Key Research and Development Program of China (No. 2022YFB3206100), the Key R&D Program of Sichuan Province (No. 2022JDTD0020), and the Medico-Engineering Cooperation Funds from University of Electronic Science and Technology supported by the Fundamental Research Funds for the Central Universities (ZYGX2022YGRH007).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Lhernould MS, Deleers M, Delchambre A. Hollow polymer microneedles array resistance and insertion tests. Int J Pharm. 2015;480(1-2):152-157. doi: 10.1016/j.ijpharm.2015.01.019
  2. Dabbagh SR, Sarabi MR, Rahbarghazi R, Sokullu E, Yetisen AK, Tasoglu S. 3D-printed microneedles in biomedical applications. iScience. 2021;24(1):102012. doi: 10.1016/j.isci.2020.102012
  3. Vyatskikh A, Delalande S, Kudo A, Zhang X, Portela CM, Greer JR. Additive manufacturing of 3D nano-architected metals. Nat Commun. 2018;9(1):593. doi: 10.1038/s41467-018-03071-9
  4. Abu-Much A, Darawshi R, Dawud H, Kasem H, Abu Ammar A. Preparation and characterization of flexible furosemide-loaded biodegradable microneedles for intradermal drug delivery. Biomater Sci. 2022;10(22):6486-6499. doi: 10.1039/d2bm01143c
  5. Avcil M, Çelik A. Microneedles in drug delivery: progress and challenges. Micromachines. 2021;12(11):1321. doi: 10.3390/mi12111321
  6. Priya S, Singhvi G. Microneedles-based drug delivery strategies: a breakthrough approach for the management of pain. Biomed Pharmacother. 2022;155:113717. doi: 10.1016/j.biopha.2022.113717
  7. Jung JH, Jin SG. Microneedle for transdermal drug delivery: current trends and fabrication. J Pharm Investig. 2021;51(5):503-517. doi: 10.1007/s40005-021-00512-4
  8. Yang J, Liu XL, Fu YZ, Song YJ. Recent advances of microneedles for biomedical applications: drug delivery and beyond. Acta Pharm Sin B. 2019;9(3):469-483. doi: 10.1016/j.apsb.2019.03.007
  9. Detamornrat U, McAlister E, Hutton ARJ, Larrañeta E, Donnelly RF. The role of 3D printing technology in microengineering of microneedles. Small. 2022;18(18):2106392. doi: 10.1002/smll.202106392
  10. Olowe M, Parupelli SK, Desai S. A review of 3D-printing of microneedles. Pharmaceutics. 2022;14(12):2693. doi: 10.3390/pharmaceutics14122693
  11. Guo M, Wang Y, Gao B, He B. Shark tooth-inspired microneedle dressing for intelligent wound management. ACS Nano. 2021;15(9):15316-15327. doi: 10.1021/acsnano.1c06279
  12. Wang R, Bai J, Zhu X, et al. A PDMS-based microneedle array electrode for long-term ECG recording. Biomed Microdevices. 2022;24(3):27. doi: 10.1007/s10544-022-00626-y
  13. Yin M, Wu J, Deng M, et al. Multifunctional magnesium organic framework-based microneedle patch for accelerating diabetic wound healing. ACS Nano. 2021;15(11):17842-17853. doi: 10.1021/acsnano.1c06036
  14. Li X, Huang X, Mo J, et al. A fully integrated closed-loop system based on mesoporous microneedles-iontophoresis for diabetes treatment. Adv Sci. 2021;8(16):2100827. doi: 10.1002/advs.202100827
  15. Zhang X, Fu X, Chen G, Wang Y, Zhao Y. Versatile ice microneedles for transdermal delivery of diverse actives. Adv Sci. 2021;8(17):2101210. doi: 10.1002/advs.202101210
  16. Wang PC, Paik SJ, Chen S, Rajaraman S, Kim SH, Allen MG. Fabrication and characterization of polymer hollow microneedle array using UV lithography into micromolds. J Microelectromech Syst. 2013;22(5):1041-1053. doi: 10.1109/JMEMS.2013.2262587
  17. Pérennès F, Marmiroli B, Matteucci M, Tormen M, Vaccari L, Di Fabrizio E. Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol. J Micromech Microeng. 2006;16(3):473-479. doi: 10.1088/0960-1317/16/3/001 
  18. Gassend BLP, Velásquez-García LF, Akinwande AI. Design and fabrication of DRIE-patterned complex needlelike silicon structures. J Microelectromech Syst. 2010;19(3): 589-598. doi: 10.1109/JMEMS.2010.2042680
  19. Roh H, Yoon YJ, Park JS, et al. Fabrication of high-density out-of-plane microneedle arrays with various heights and diverse cross-sectional shapes. Nano-Micro Lett. 2022;14(1):24. doi: 10.1007/s40820-021-00778-1
  20. Albarahmieh E, AbuAmmouneh L, Kaddoura Z, AbuHantash F, Alkhalidi BA, Al-Halhouli A. Fabrication of dissolvable microneedle patches using an innovative laser-cut mould design to shortlist potentially transungual delivery systems: in vitro evaluation. AAPS PharmSciTech. 2019;20(5):215. doi: 10.1208/s12249-019-1429-5
  21. Hara Y, Yamada M, Tatsukawa C, Takahashi T, Suzuki M, Aoyagi S. Fabrication of stainless steel microneedle with laser-cut sharp tip and its penetration and blood sampling performance. Int J Automot Technol. 2016;10(6):950-957. doi: 10.20965/ijat.2016.p0950
  22. Kun-Tse T, Chen-Kuei C. Fabrication of biodegradable polymer microneedle array via CO2 laser ablation. In: Proceedings of the IEEE International Conference on Nano/ Micro Engineered and Molecular Systems (NEMS). IEEE; 2015: 494-497. doi: 10.1109/NEMS.2015.7147476.
  23. Zhu Z, Luo H, Lu W, et al. Rapidly dissolvable microneedle patches for transdermal delivery of exenatide. Pharm Res. 2014;31(12):3348-3360. doi: 10.1007/s11095-014-1424-1
  24. Bystrova S, Luttge R. Micromolding for ceramic microneedle arrays. Microelectron Eng. 2011;88:1681-1684. doi: 10.1016/j.mee.2010.12.067
  25. Silvestre SL, Araújo D, Marques AC, et al. Microneedle arrays of polyhydroxyalkanoate by laser-based micromolding technique. ACS Appl Bio Mater. 2020;3(9):5856-5864. doi: 10.1021/acsabm.0c00570
  26. Tarbox TN, Watts AB, Cui Z, Williams RO. An update on coating/manufacturing techniques of microneedles. Drug Deliv Transl Res. 2018;8(6):1828-1843. doi: 10.1007/s13346-017-0466-4
  27. Indermun S, Luttge R, Choonara YE, et al. Current advances in the fabrication of microneedles for transdermal delivery. J Control Release. 2014;185:130-138. doi: 10.1016/j.jconrel.2014.04.052
  28. McAllister DV, Wang PM, Davis SP, et al. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. PNAS. 2003;100(24):13755-13760. doi: 10.1073/pnas.2331316100
  29. Henry S, McAllister DV, Allen MG, Prausnitz MR. Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci. 1998;87(8):922-925. doi: 10.1021/js980042+
  30. Katwal R, Kaur H, Sharma G, Naushad M, Pathania D. Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity. J Ind Eng Chem. 2015;31:173-184. doi: 10.1016/j.jiec.2015.06.021
  31. Wilke N, Mulcahy A, Ye SR, Morrissey A. Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectron J. 2005;36(7):650-656. doi: 10.1016/j.mejo.2005.04.044
  32. Jung JH, Jin SG. Microneedle for transdermal drug delivery: current trends and fabrication. J Pharm Invest. 2021;51(5):503-517. doi: 10.1007/s40005-021-00512-4
  33. Li YG, Wu WY, Wang H, Cai JD, Lü T. Fabrication, testing and simulation of microneedle array based on X-ray lithography. Opt Precis Eng. 2018;26(5):1156-1164. doi: 10.3788/OPE.20182605.1156
  34. Ajay AP, Dasgupta A, Chatterjee D. Fabrication of monolithic SU-8 microneedle arrays having different needle geometries using a simplified process. Int J Adv Manuf Technol. 2021;114(11-12):3615-3626. doi: 10.1007/s00170-021-07038-x 
  35. Arora A, Prausnitz MR, Mitragotri S. Micro-scale devices for transdermal drug delivery. Int J Pharm. 2008;364(2): 227-236. doi: 10.1016/j.ijpharm.2008.08.032
  36. Chiang K, Amal R, Tran T. Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide. Adv Environ Res. 2002;6(4):471-485. doi: 10.1016/S1093-0191(01)00074-0
  37. Choi CK, Lee KJ, Youn YN, et al. Spatially discrete thermal drawing of biodegradable microneedles for vascular drug delivery. Eur J Pharm Biopharm. 2013;83(2):224-233. doi: 10.1016/j.ejpb.2012.10.020
  38. Lee K, Lee HC, Lee DS, Jung H. Drawing lithography: three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle. Adv Mater. 2010;22(4):483-486. doi: 10.1002/adma.200902418
  39. Lee K, Park SH, Lee J, Ryu S, Joo C, Ryu W. Three-step thermal drawing for rapid prototyping of highly customizable microneedles for vascular tissue insertion. Pharmaceutics. 2019;11(3)100. doi: 10.3390/pharmaceutics11030100
  40. Lee K, Jung H. Drawing lithography for microneedles: a review of fundamentals and biomedical applications. Biomaterials. 2012;33(30):7309-7326. doi: 10.1016/j.biomaterials.2012.06.065
  41. Banks SL, Pinninti RR, Gill HS, et al. Transdermal delivery of naltrexol and skin permeability lifetime after microneedle treatment in hairless guinea pigs. J Pharm Sci. 2010;99(7):3072-3080. doi: 10.1002/jps.22083
  42. Li CG, Lee CY, Lee K, Jung H. An optimized hollow microneedle for minimally invasive blood extraction. Biomed Microdevices. 2013;15(1):17-25. doi: 10.1007/s10544-012-9683-2
  43. Arya J, Henry S, Kalluri H, McAllister DV, Pewin WP, Prausnitz MR. Tolerability, usability and acceptability of dissolving microneedle patch administration in human subjects. Biomaterials. 2017;128:1-7. doi: 10.1016/j.biomaterials.2017.02.040
  44. Nejad HR, Sadeqi A, Kiaee G, Sonkusale S. Low-cost and cleanroom-free fabrication of microneedles. Microsyst Nanoeng. 2018;4(1)17073. doi: 10.1038/MICRONANO.2017.73
  45. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Composites, Part B. 2018;143:172-196. doi: 10.1016/j.compositesb.2018.02.012
  46. Khosraviboroujeni A, Mirdamadian SZ, Minaiyan M, Taheri A. Preparation and characterization of 3D printed PLA microneedle arrays for prolonged transdermal drug delivery of estradiol valerate. Drug Deliv Transl Res. 2022;12(5):1195-1208. doi: 10.1007/s13346-021-01006-4
  47. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017;117(15):10212-10290. doi: 10.1021/acs.chemrev.7b00074
  48. Lee BJ, Hsiao K, Lipkowitz G, Samuelsen T, Tate L, DeSimone JM. Characterization of a 30 microm pixel size CLIP-based 3D printer and its enhancement through dynamic printing optimization. Addit Manuf. 2022;55:102800. doi: 10.1016/j.addma.2022.102800
  49. Luzuriaga MA, Berry DR, Reagan JC, Smaldone RA, Gassensmith JJ. Biodegradable 3D printed polymer 50. Yao W, Li D, Zhao Y, et al. 3D printed multi-functional hydrogel microneedles based on high-precision digital light processing. Micromachines. 2020;11(1)17. doi: 10.3390/mi11010017
  50. Ovsianikov A, Chichkov B, Mente P, Monteiro-Riviere NA, Doraiswamy A, Narayan RJ. Two photon polymerization of polymer-ceramic hybrid materials for transdermal drug delivery. Int J Appl Ceram Technol. 2007;4(1):22-29. doi: 10.1111/j.1744-7402.2007.02115.x
  51. Liao C, Anderson W, Antaw F, Trau M. Two-photon nanolithography of tailored hollow three-dimensional microdevices for biosystems. ACS Omega. 2019;4(1): 1401-1409. doi: 10.1021/acsomega.8b03164 
  52. Szeto B, Aksit A, Valentini C, et al. Novel 3D-printed hollow microneedles facilitate safe, reliable, and informative sampling of perilymph from guinea pigs. Hear Res. 2021;400:108141. doi: 10.1016/j.heares.2020.108141
  53. Li R, Zhang L, Jiang X, et al. 3D-printed microneedle arrays for drug delivery. J Control Release. 2022;350:933-948. doi: 10.1016/j.jconrel.2022.08.022
  54. Cordeiro AS, Tekko IA, Jomaa MH, et al. Two-photon polymerisation 3D printing of microneedle array templates with versatile designs: application in the development of polymeric drug delivery systems. Pharm Res. 2020;37(9):174. doi: 10.1007/s11095-020-02887-9
  55. Xenikakis I, Tsongas K, Tzimtzimis EK, et al. Fabrication of hollow microneedles using liquid crystal display (LCD) vat polymerization 3D printing technology for transdermal macromolecular delivery. Int J Pharm. 2021;597:120303. doi: 10.1016/j.ijpharm.2021.120303
  56. Xenikakis I, Tsongas K, Tzimtzimis EK, et al. Transdermal delivery of insulin across human skin in vitro with 3D printed hollow microneedles. J Drug Delivery Sci Technol. 2022;67102891. doi: 10.1016/j.jddst.2021.102891
  57. Johnson AR, Caudill CL, Tumbleston JR, et al. Single-step fabrication of computationally designed microneedles by continuous liquid interface production. PLoS One. 2016;11(9):e0162518. doi: 10.1371/journal.pone.0162518
  58. Caudill CL, Perry JL, Tian S, Luft JC, DeSimone JM. Spatially controlled coating of continuous liquid Interface production microneedles for transdermal protein delivery. J Controlled Release. 2018;284:122-132. doi: 10.1016/j.jconrel.2018.05.042
  59. Liu X, Li R, Yuan X, et al. Fast customization of microneedle arrays by static optical projection lithography. ACS Appl Mater Interfaces. 2021;13(50):60522-60530. doi: 10.1021/acsami.1c21489
  60. Li R, Liu X, Yuan X, et al. Fast customization of hollow microneedle patches for insulin delivery. Int J Bioprint. 2022;8(2):124-135. doi: 10.18063/ijb.v8i2.553
  61. Fiedler S, Irsig R, Gieseke M, et al. Material processing with femtosecond laser pulses for medical applications. Biomed Tech. 2012;57:603-605. doi: 10.1515/bmt-2012-4405
  62. Khosraviboroujeni A, Mirdamadian SZ, Minaiyan M, Taheri A. Preparation and characterization of 3D printed PLA microneedle arrays for prolonged transdermal drug delivery of estradiol valerate. Drug Deliv Transl Res. 2022;12(5):1195-1208. doi: 10.1007/s13346-021-01006-4
  63. Wu L, Park J, Kamaki Y, Kim B. Optimization of the fused deposition modeling-based fabrication process for polylactic acid microneedles. Microsyst Nanoeng. 2021;7(1):58. doi: 10.1038/s41378-021-00284-9
  64. Wu M, Zhang Y, Huang H, et al. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Mater Sci Eng, C. 2020;117:111299. doi: 10.1016/j.msec.2020.111299
  65. Li Y, Chen K, Pang Y, et al. Multifunctional microneedle patches via direct ink drawing of nanocomposite inks for personalized transdermal drug delivery. ACS Nano. 2023;17(20):19925-19937. doi: 10.1021/acsnano.3c04758
  66. Yadav V, Sharma PK, Murty US, et al. 3D printed hollow microneedles array using stereolithography for efficient transdermal delivery of rifampicin. Int J Pharm. 2021;605:120815. doi: 10.1016/j.ijpharm.2021.120815
  67. Krieger KJ, Bertollo N, Dangol M, Sheridan JT, Lowery MM, O’Cearbhaill ED. Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing. Microsyst Nanoeng. 2019;5(1):42. doi: 10.1038/s41378-019-0088-8
  68. Deng S, Wu J, Dickey MD, Zhao Q, Xie T. Rapid open-air digital light 3D printing of thermoplastic polymer. Adv Mater. 2019;31(39):1903970. doi: 10.1002/adma.201903970 
  69. Lim SH, Ng JY, Kang L. Three-dimensional printing of a microneedle array on personalized curved surfaces for dual-pronged treatment of trigger finger. Biofabrication. 2017;9(1):015010. doi: 10.1088/1758-5090/9/1/015010
  70. Shin D, Hyun J. Silk fibroin microneedles fabricated by digital light processing 3D printing. J Ind Eng Chem. 2021;95:126-133. doi: 10.1016/j.jiec.2020.12.011
  71. Faraji Rad Z, Prewett PD, Davies GJ. Rapid prototyping and customizable microneedle design: ultra-sharp microneedle fabrication using two-photon polymerization and low-cost micromolding techniques. Manuf Lett. 2021;30:39-43. doi: 10.1016/j.mfglet.2021.10.007
  72. Rad ZF, Nordon RE, Anthony CJ, et al. High-fidelity replication of thermoplastic microneedles with open microfluidic channels. Microsyst Nanoeng. 2017;3:17034. doi: 10.1038/micronano.2017.34
  73. Pere CPP, Economidou SN, Lall G, et al. 3D printed microneedles for insulin skin delivery. Int J Pharm. 2018;544(2):425-432. doi: 10.1016/j.ijpharm.2018.03.031
  74. Uddin MJ, Scoutaris N, Economidou SN, et al. 3D printed microneedles for anticancer therapy of skin tumours. Mater Sci Eng, C. 2020;107:110248. doi: 10.1016/j.msec.2019.110248
  75. Kruth JP. Material incress manufacturing by rapid prototyping techniques. CIRP Ann. 1991;40(2):603-614. doi: 10.1016/S0007-8506(07)61136-6
  76. Chen ZE, Wu XH, Tomus D, Davies CHJ. Surface roughness of selective laser melted Ti-6Al-4V alloy components. Addit Manuf. 2018;21:91-103. doi: 10.1016/j.addma.2018.02.009
  77. Economidou SN, Pere CPP, Reid A, et al. 3D printed microneedle patches using stereolithography (SLA)for intradermal insulin delivery. Mater Sci Eng, C. 2019;102:743-755. doi: 10.1016/j.msec.2019.04.063
  78. Mathew E, Pitzanti G, dos Santos ALG, Lamprou DA. Optimization of printing parameters for digital light processing 3D printing of hollow microneedle arrays. Pharmaceutics. 2021;13(11):1837. doi: 10.3390/pharmaceutics13111837
  79. Moussi K, Bukhamsin A, Hidalgo T, Kosel J. Biocompatible 3D printed microneedles for transdermal, intradermal, and percutaneous applications. Adv Eng Mater. 2020;22(2):1901358. doi: 10.1002/adem.201901358
  80. Ebrahiminejad V, Rad ZF, Prewett PD, Davies GJ. Fabrication and testing of polymer microneedles for transdermal drug delivery. Beilstein J Nanotechnol. 2022;13:629-640. doi: 10.3762/bjnano.13.55
  81. Gieseke M, Senz V, Vehse M, et al. Additive manufacturing of drug delivery systems. Biomed Tech. 2012;57:398-401. doi: 10.1515/bmt-2012-4109
  82. Plamadeala C, Gosain SR, Hischen F, et al. Bio-inspired microneedle design for efficient drug/vaccine coating. Biomed Microdevices. 2019;22(1):8. doi: 10.1007/s10544-019-0456-z
  83. Huang L, Li L, Jiang Y, et al. Tumbler-inspired microneedle containing robots: achieving rapid self-orientation and peristalsis-resistant adhesion for colonic administration. Adv Funct Mater. 2023;33(43):23042767. doi: 10.1002/adfm.202304276
  84. Song J-M, Kim Y-C, Barlow PG, et al. Improved protection against avian influenza H5N1 virus by a single vaccination with virus-like particles in skin using microneedles. Antiviral Res. 2010;88(2):244-247. doi: 10.1016/j.antiviral.2010.09.001
  85. Ogai N, Nonaka I, Toda Y, et al. Enhanced immunity in intradermal vaccination by novel hollow microneedles. Skin Res Technol. 2018;24(4):630-635. doi: 10.1111/srt.12576
  86. Chen MC, Huang SF, Lai KY, Ling MH. Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination. Biomaterials. 2013;34(12):3077-3086. doi: 10.1016/j.biomaterials.2012.12.041 
  87. Caudill C, Perry JL, Iliadis K, et al. Transdermal vaccination via 3D-printed microneedles induces potent humoral and cellular immunity. PNAS. 2021;118(39):e2102595118. doi: 10.1073/pnas.2102595118
  88. Lim SH, Tiew WJ, Zhang J, Ho PCL, Kachouie NN, Kang L. Geometrical optimisation of a personalised microneedle eye patch for transdermal delivery of anti-wrinkle small peptide. Biofabrication. 2020;12(3):035003. doi: 10.1088/1758-5090/ab6d37
  89. Zhang Q, Shi L, He H, et al. Down-regulating scar formation by microneedles directly via a mechanical communication pathway. ACS Nano. 2022;16(7):10163-10178. doi: 10.1021/acsnano.1c11016
  90. Yin MR, Zeng YN, Liu HQ, et al. Dissolving microneedle patch integrated with microspheres for long-acting hair regrowth therapy. ACS Appl Mater Interfaces. 2023;15(14):17532-17542. doi: 10.1021/acsami.2c22814
  91. Liu YQ, Yu Q, Luo XJ, Yang L, Cui Y. Continuous monitoring of diabetes with an integrated microneedle biosensing device through 3D printing. Microsyst Nanoeng. 2021;7(1):75. doi: 10.1038/s41378-021-00302-w
  92. Parrilla M, Vanhooydonck A, Johns M, Watts R, De Wael K. 3D-printed microneedle-based potentiometric sensor for pH monitoring in skin interstitial fluid. Sens Actuators, B. 2023;378;133159. doi: 10.1016/j.snb.2022.133159
  93. Wu Y, Tehrani F, Teymourian H, et al. Microneedle aptamer-based sensors for continuous, real-time therapeutic drug monitoring. Anal Chem. 2022;94(23):8335-8345. doi: 10.1021/acs.analchem.2c00829
  94. Yang Q, Wang Y, Liu T, et al. Microneedle array encapsulated with programmed DNA hydrogels for rapidly sampling and sensitively sensing of specific MicroRNA in dermal interstitial fluid. ACS Nano. 2022;16(11):18366-18375. doi: 10.1021/acsnano.2c06261
  95. Ishtiaque Hossain N, Tabassum S. Stem-FIT: a microneedle-based multi-parametric sensor for in situ monitoring of salicylic acid and pH levels in live plants. In: Proceedings of the 2022 IEEE 17th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE; 2022: 312-316. doi: 10.1109/NEMS54180.2022.9791212
  96. Yi X, Yuan Z, Yu X, Zheng L, Wang C. Novel microneedle patch-based surface-enhanced raman spectroscopy sensor for the detection of pesticide residues. ACS Appl Mater Interfaces. 2023;15(4):4873-4882. doi: 10.1021/acsami.2c17954
  97. Luo H, Shen Y, Liao Z, Yang X, Gao B, He B. Spidroin composite biomimetic multifunctional skin with meta-structure. Adv Mater Technol. 2022;7(6):2101097. doi: 10.1002/admt.202101097
  98. Tao K, Yu J, Zhang J, et al. Deep-learning enabled active biomimetic multifunctional hydrogel electronic skin. ACS Nano. 2023;17(16):16160-16173. doi: 10.1021/acsnano.3c05253
  99. He R, Liu H, Fang T, et al. A colorimetric dermal tattoo biosensor fabricated by microneedle patch for multiplexed detection of health-related biomarkers. Adv Sci. 2021;8(24):2103030. doi: 10.1002/advs.202103030
  100. Forvi E, Bedoni M, Carabalona R, et al. Preliminary technological assessment of microneedles-based dry electrodes for biopotential monitoring in clinical examinations. Sens Actuators, A. 2012;180:177-186. doi: 10.1016/j.sna.2012.04.019
  101. Griss P, Tolvanen-Laakso HK, Meriläinen P, Stemme G. Characterization of micromachined spiked biopotential electrodes. IEEE Trans Biomed Eng. 2002;49(6):597-604. doi: 10.1109/TBME.2002.1001974
  102. Chen KY, Ren L, Chen ZP, Pan CF, Zhou W, Jiang LL. Fabrication of micro-needle electrodes for bio-signal recording by a magnetization-induced self-assembly method. Sensors. 2016;16(9):1533. doi: 10.3390/s16091533
  103. Salvo P, Raedt R, Carrette E, Schaubroeck D, Vanfleteren J, Cardon L. A 3D printed dry electrode for ECG/EEG recording. Sens Actuators, A. 2012;174:96-102. doi: 10.1016/j.sna.2011.12.017 
  104. Ren L, Jiang Q, Chen Z, et al. Flexible microneedle array electrode using magnetorheological drawing lithography for bio-signal monitoring. Sens Actuators, A. 2017;268:38-45. doi: 10.1016/j.sna.2017.10.042
  105. Zhang X, Chen G, Sun L, Ye F, Shen X, Zhao Y. Claw-inspired microneedle patches with liquid metal encapsulation for accelerating incisional wound healing. Chem Eng J. 2021;406126741. doi: 10.1016/j.cej.2020.126741
  106. Zhang X, Chen G, Liu Y, Sun L, Sun L, Zhao Y. Black phosphorus-loaded separable microneedles as responsive oxygen delivery carriers for wound healing. ACS Nano. 2020;14(5):5901-5908. doi: 10.1021/acsnano.0c01059
  107. Liu X, Tian S, Xu S, et al. A pressure-resistant zwitterionic skin sensor for domestic real-time monitoring and pro-healing of pressure injury. Biosens Bioelectron. 2022;214114528. doi: 10.1016/j.bios.2022.114528
  108. Shao Y, Dong K, Lu X, Gao B, He B. Bioinspired 3D-printed mxene and spidroin-based near-infrared light-responsive microneedle scaffolds for efficient wound management. ACS Appl Mater Interfaces. 2022;14(51):56525-56534. doi: 10.1021/acsami.2c16277
  109. Gao B, Guo M, Lyu K, Chu T, He B. Intelligent silk fibroin based microneedle dressing (i-SMD). Adv Funct Mater. 2021;31(3):2006839. doi: 10.1002/adfm.202006839
  110. Chi J, Zhang X, Chen C, Shao C, Zhao Y, Wang Y. Antibacterial and angiogenic chitosan microneedle array patch for promoting wound healing. Bioact Mater. 2020;5(2):253-259. doi: 10.1016/j.bioactmat.2020.02.004
  111. Petlin DG, Tverdokhlebov SI, Anissimov YG. Plasma treatment as an efficient tool for controlled drug release from polymeric materials: a review. J Controlled Release. 2017;266:57-74. doi: 10.1016/j.jconrel.2017.09.023
  112. Cárcamo-Martínez Á, Mallon B, Domínguez-Robles J, Vora LK, Anjani QK, Donnelly RF. Hollow microneedles: a perspective in biomedical applications. Int J Pharm. 2021;599120455. doi: 10.1016/j.ijpharm.2021.120455
  113. Kashaninejad N, Munaz A, Moghadas H, Yadav S, Umer M, Nguyen NT. Microneedle arrays for sampling and sensing skin interstitial fluid. Chemosensors. 2021;9(4):83. doi: 10.3390/chemosensors9040083
  114. Zhu MW, Li HW, Chen XL, Tang YF, Lu MH, Chen YF. Silica needle template fabrication of metal hollow microneedle arrays. J Micromech Microeng. 2009;19(11):115010. doi: 10.1088/0960-1317/19/11/115010
  115. Kim K, Lee JB. High aspect ratio tapered hollow metallic microneedle arrays with microfluidic interconnector. Microsyst Technol. 2007;13(3-4):231-235. doi: 10.1007/s00542-006-0221-0
  116. Norman JJ, Choi SO, Tong NT, et al. Hollow microneedles for intradermal injection fabricated by sacrificial micromolding and selective electrodeposition. Biomed Microdevices. 2013;15(2):203-210. doi: 10.1007/s10544-012-9717-9
  117. Oh J, Liu K, Medina T, Kralick F, Noh H. A novel microneedle array for the treatment of hydrocephalus. Microsyst Technol. 2014;20(6):1169-1179. doi: 10.1007/s00542-013-1988-4
  118. Shikida M, Hasada T, Sato K. Fabrication of a hollow needle structure by dicing, wet etching and metal deposition. J Micromech Microeng. 2006;16(10):2230-2239. doi: 10.1088/0960-1317/16/10/041
  119. Lin L, Wang YQ, Cai MK, et al. Multimicrochannel microneedle microporation platform for enhanced intracellular drug delivery. Adv Funct Mater. 2022;32(21):2109187. doi: 10.1002/adfm.202109187
  120. Ren Y, Li J, Chen Y, et al. Customized flexible hollow microneedles for psoriasis treatment with reduced-dose drug. Bioeng Transl Med. 2023;8(4):e10530. doi: 10.1002/btm2.10530
  121. Wang PM, Cornwell M, Hill J, Prausnitz MR. Precise microinjection into skin using hollow microneedles. J Invest Dermatol. 2006;126(5):1080-1087. doi: 10.1038/sj.jid.5700150 
  122. Martanto W, Moore JS, Kashlan O, et al. Microinfusion using hollow microneedles. Pharm Res. 2006;23(1):104-113. doi: 10.1007/s11095-005-8498-8
  123. Yeung C, Chen S, King B, et al. A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery. Biomicrofluidics. 2019;13(6):064125. doi: 10.1063/1.5127778
  124. Li Q, Xu R, Fan H, et al. Smart mushroom-inspired imprintable and lightly detachable (MILD) microneedle patterns for effective COVID-19 vaccination and decentralized information storage. ACS Nano. 2021;16(5):7512-7524. doi: 10.1021/acsnano.1c10718
  125. Xu R, Guo H, Chen X, et al. Smart hydrothermally responsive microneedle for topical tumor treatment. J Controlled Release. 2023;358:566-578. doi: 10.1016/j.jconrel.2023.05.008
  126. Ma GJ, Shi LT, Wu CW. Biomechanical property of a natural microneedle: the caterpillar spine. J Med Devices. 2011;5(3):034502. doi: 10.1115/1.4004651
  127. Ma G, Wu C. Microneedle, bio-microneedle and bio-inspired microneedle: a review. J Controlled Release. 2017;251:11-23. doi: 10.1016/j.jconrel.2017.02.011
  128. Chen Z, Lin Y, Lee W, et al. Additive manufacturing of honeybee-inspired microneedle for easy skin insertion and difficult removal. ACS Appl Mater Interfaces. 2018;10(35):29338-29346. doi: 10.1021/acsami.8b09563
  129. Han D, Morde RS, Mariani S, et al. 4D printing of a bioinspired microneedle array with backward-facing barbs for enhanced tissue adhesion. Adv Funct Mater. 2020;30(11):1909197. doi: 10.1002/adfm.201909197
  130. Nakamachi E, Jinninn S, Uetsuji Y, Tsuchiya K, Yamamoto H. Sputter generating and characterization of a titanium alloy microneedle for applying to Bio-MEM. Trans Jpn Soc Mech Eng, Part A. 2006;72(4):471-477. doi: 10.1299/kikaia.72.471
  131. Hegarty C, McKillop S, Dooher T, Dixon D, Davis J. Composite microneedle arrays modified with palladium nanoclusters for electrocatalytic detection of peroxide. IEEE Sens Lett. 2019;3(9):8809207. doi: 10.1109/LSENS.2019.2935831
  132. Omolu A, Bailly M, Day RM. Assessment of solid microneedle rollers to enhance transmembrane delivery of doxycycline and inhibition of MMP activity. Drug Deliv. 2017;24(1):942-951. doi: 10.1080/10717544.2017.1337826
  133. Ita K. Ceramic microneedles and hollow microneedles for transdermal drug delivery: two decades of research. J Drug Delivery Sci Technol. 2018;44:314-322. doi: 10.1016/j.jddst.2018.01.004
  134. Mishra R, Pramanick B, Maiti TK, Bhattacharyya TK. Glassy carbon microneedles—new transdermal drug delivery device derived from a scalable C-MEMS process. Microsyst Nanoeng. 2018;4(1):38. doi: 10.1038/s41378-018-0039-9
  135. Blyweert P, Nicolas V, Fierro V, Celzard A. 3D printing of carbon-based materials: a review. Carbon. 2021;183: 449-485. doi: 10.1016/j.carbon.2021.07.036
  136. Marsden AJ, Papageorgiou DG, Vallés C, et al. Electrical percolation in graphene-polymer composites. 2D Materials. 2018;5(3):032003. doi: 10.1088/2053-1583/aac055
  137. Bagotia N, Choudhary V, Sharma DK. A review on the mechanical, electrical and EMI shielding properties of carbon nanotubes and graphene reinforced polycarbonate nanocomposites. Polym Adv Technol. 2018;29(6):1547-1567. doi: 10.1002/pat.4277
  138. Tilve-Martinez D, Neri W, Horaud D, et al. Graphene oxide based transparent resins for accurate 3D printing of conductive materials. Adv Funct Mater. 2023;33(21):2214954. doi: 10.1002/adfm.202214954 
  139. Dornelas PHG, Santos TG, Oliveira JP. Micro-metal additive manufacturing – state-of-art and perspectives. Int J Adv Manuf Technol. 2022;122(9-10):3547-3564. doi: 10.1007/s00170-022-10110-9
  140. McKee S, Lutey A, Sciancalepore C, Poli F, Selleri S, Cucinotta A. Microfabrication of polymer microneedle arrays using two-photon polymerization. J Photochem Photobiol, B. 2022;229:112424. doi: 10.1016/j.jphotobiol.2022.112424
  141. Chen Z, Ren L, Li J, et al. Rapid fabrication of microneedles using magnetorheological drawing lithography. Acta Biomater. 2018;65:283-291. doi: 10.1016/j.actbio.2017.10.030
  142. Yung KL, Xu Y, Kang C, et al. Sharp tipped plastic hollow microneedle array by microinjection moulding. J Micromech Microeng. 2012;22(1):015016. doi: 10.1088/0960-1317/22/1/015016
  143. Baek JY, Kang KM, Kim HJ, et al. Manufacturing process of polymeric microneedle sensors for mass production. Micromachines. 2021;12(11):1364. doi: 10.3390/mi12111364
  144. McConville A, Davis J. Transdermal microneedle sensor arrays based on palladium: polymer composites. Electrochem Commun. 2016;72:162-165. doi: 10.1016/j.elecom.2016.09.024
  145. Li X, Shan W, Yang Y, et al. Limpet tooth-inspired painless microneedles fabricated by magnetic field-assisted 3D printing. Adv Funct Mater. 2021;31(5):2003725. doi: 10.1002/adfm.202003725
  146. Nishita M, Park SY, Nishio T, et al. Ror2 signaling regulates golgi structure and transport through IFT20 for tumor invasiveness. Sci Rep. 2017;7(1):1. doi: 10.1038/s41598-016-0028-x
  147. Chen Z, Ye R, Yang J, et al. Rapidly fabricated microneedle arrays using magnetorheological drawing lithography for transdermal drug delivery. ACS Biomater Sci Eng. 2019;5(10):5506-5513. doi: 10.1021/acsbiomaterials.9b00919
  148. Souissi S, Makni C, Belhadj Ammar L, Bousnina O, Kallel L. Correlation between the intensity of Helicobacter pylori colonization and severity of gastritis: results of a prospective study. Helicobacter. 2022;27(4):e12910. doi: 10.1111/hel.12910
  149. Waghule T, Singhvi G, Dubey SK, et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109: 1249-1258. doi: 10.1016/j.biopha.2018.10.078
  150. Banga AK. Microporation applications for enhancing drug delivery. Expert Opin Drug Delivery. 2009;6(4):343-354. doi: 10.1517/17425240902841935
  151. Larrañeta E, Lutton REM, Woolfson AD, Donnelly RF. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng, R. 2016; 104:1-32. doi: 10.1016/j.mser.2016.03.001
  152. Lee H, Song C, Baik S, Kim D, Hyeon T, Kim D-H. Device-assisted transdermal drug delivery. Adv Drug Delivery Rev. 2018;127:35-45. doi: 10.1016/j.addr.2017.08.009
  153. Bae WG, Ko H, So JY, et al. Snake fang-inspired stamping patch for transdermal delivery of liquid formulations. Sci Transl Med. 2019;11(503):eaaw3329. doi: 10.1126/scitranslmed.aaw3329
  154. Zhang X, Wang F, Yu Y, et al. Bio-inspired clamping microneedle arrays from flexible ferrofluid-configured moldings. Sci Bull. 2019;64(15):1110-1117. doi: 10.1016/j.scib.2019.06.016
  155. Trautmann A, Roth GL, Nujiqi B, Walther T, Hellmann R. Towards a versatile point-of-care system combining femtosecond laser generated microfluidic channels and direct laser written microneedle arrays. Microsyst Nanoeng. 2019;5(1):6. doi: 10.1038/s41378-019-0046-5 
    1. Gardan J. Additive manufacturing technologies: state of the art and trends. In: Badiru AB, Valencia VV, Liu D, eds. Additive Manufacturing Handbook: Product Development for the Defense Industry. Boca Raton: CRC Press; 2017: 149-168. doi: 10.1201/9781315119106
    2. Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X. Photo-curing 3D printing technique and its challenges. Bioact Mater. 2020;5(1):110-115. doi: 10.1016/j.bioactmat.2019.12.003
    3. Yang Q, Zhong W, Liu Y, et al. 3D-printed morphology-customized microneedles: understanding the correlation between their morphologies and the received qualities. Int J Pharm. 2023;638122873. doi: 10.1016/j.ijpharm.2023.122873
    4. Wang Z, Fu R, Han X, et al. Shrinking fabrication of a glucose-responsive glucagon microneedle patch. Adv Sci. 2022;9(28):2203274. doi: 10.1002/advs.202203274
    5. Zhu Z, Wang J, Pei X, et al. Blue-ringed octopus-inspired microneedle patch for robust tissue surface adhesion and active injection drug delivery. Sci Adv. 2023;9(25):eadh2213. doi: 10.1126/sciadv.adh2213
    6. Li S, Li C, Khan MI, et al. Microneedle array facilitates hepatic sinusoid construction in a large-scale liver-acinus-chip microsystem. Microsyst Nanoeng. 2023;9(1):75. doi: 10.1038/s41378-023-00544-w

     

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing