AccScience Publishing / IJB / Volume 10 / Issue 2 / DOI: 10.36922/ijb.1669
Cite this article
41
Download
871
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Advances in tissue engineering and 3D bioprinting for corneal regeneration

Tamás Monostori1,2,3 Diána Szűcs1,2,3 Borbála Lovászi1,2,3 Lajos Kemény3,4 Zoltán Veréb1,3*
Show Less
1 Regenerative Medicine and Cellular Pharmacology Laboratory (HECRIN), Department of Dermatology and Allergology, Faculty of Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
2 Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
3 Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
4 Hungarian Centre of Excellence for Molecular Medicine-USz Skin Research Group, University of Szeged, Szeged, Hungary
IJB 2024, 10(2), 1669 https://doi.org/10.36922/ijb.1669
Submitted: 23 August 2023 | Accepted: 31 October 2023 | Published: 16 January 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Blindness resulting from corneal damage affects millions of people worldwide. The scarcity of corneal donors adds a layer of complexity to patient treatment. Consequently, exploring artificial cornea substitutes has become imperative in the realm of clinical research. Scientific advancements have ushered in a plethora of innovative solutions, including keratoprostheses or decellularized cornea scaffolds. The development of three-dimensional (3D) printing has further expanded the horizons of research in this field, delving into the feasibility of bioprinted corneas and yielding numerous promising outcomes. However, the manufacturing of corneal products via 3D printing poses a substantial challenge, demanding a meticulous selection of materials and techniques to ensure the transparency and preservation of the optical and mechanical properties of the artificial cornea. In the review, we present the artificial cornea substitutes. Additionally, we aim to provide a concise overview of the 3D printing techniques and materials applicable to corneal bioprinting.

Keywords
Cornea
Blindness
Artificial cornea
3D printing
Stem cells
Funding
This work was supported by the National Research, Development, and Innovation Office (NKFI PD 132570, awarded to Z.V.). Z.V. was also the recipient of the Bolyai János Postdoctoral Fellowship (BO/00190/20/5), funded by the New National Excellence Program of the Hungarian Ministry for Innovation and Technology through the National Research Development and Innovation Fund. Projects TKP2021-EGA-28 and TKP2021-EGA-32 were carried out with support from the Ministry of Innovation and Technology of Hungary through the National Research, Development and Innovation Fund, financed under the TKP2021-EGA funding scheme. The funders played no role in study design, data collection, analysis, publishing decisions, or manuscript preparation.
References
  1. Zare M, Javadi MA, Einollahi B, et al. Changing indications and surgical techniques for corneal transplantation between 2004 and 2009 at a tertiary referral center. Middle East Afr J Ophthalmol. 2012;19(3):323-329. doi: 10.4103/0974-9233.97941
  2. Pandey AK, Mudgil N, Wadgave Y, Mishra SS. Corneal transplantation during COVID-19 pandemic: need for special considerations-A live review. AIMS Public Health. 2021;8(2):186-195. doi: 10.3934/publichealth.2021014
  3. Gaum L, Reynolds I, Jones MN, Clarkson AJ, Gillan HL, Kaye SB. Tissue and corneal donation and transplantation in the UK. Br J Anaesth. 2012;108(Suppl 1): i43-47. doi: 10.1093/bja/aer398
  4. Hatou S, Shimmura S. Review: corneal endothelial cell derivation methods from ES/iPS cells. Inflamm Regen. 2019;39:19. doi: 10.1186/s41232-019-0108-y
  5. Orash Mahmoud Salehi A, Heidari-Keshel S, Poursamar SA, et al. Bioprinted membranes for corneal tissue engineering: a review. Pharmaceutics. 2022;14(12):2797. doi: 10.3390/pharmaceutics14122797
  6. Isaacson A, Swioklo S, Connon CJ. 3D bioprinting of a corneal stroma equivalent. Exp Eye Res. 2018;173:188-193. doi: 10.1016/j.exer.2018.05.010
  7. Zhang B, Xue Q, Li J, et al. 3D bioprinting for artificial cornea: challenges and perspectives. Med Eng Phys. 2019;71: 68-78. doi: 10.1016/j.medengphy.2019.05.002
  8. Sridhar MS,. Anatomy of cornea and ocular surface. Indian J Ophthalmol. 2018;66(2):190-194. doi: 10.4103/ijo.IJO_646_17
  9. Meek KM, Knupp C. Corneal structure and transparency. Prog Retin Eye Res. 2015;49:1-16. doi: 10.1016/j.preteyeres.2015.07.001
  10. Mobaraki M, Soltani M, Zare Harofte S, et al. Biodegradable nanoparticle for cornea drug delivery: focus review. Pharmaceutics. 2020;12(12). doi: 10.3390/pharmaceutics12121232
  11. Dua HS, Faraj LA, Branch MJ, et al. The collagen matrix of the human trabecular meshwork is an extension of the novel pre-Descemet’s layer (Dua’s layer). Br J Ophthalmol. 2014;98(5):691-697. doi: 10.1136/bjophthalmol-2013-304593
  12. Ruan Y, Jiang SB, Musayeva A, Pfeiffer N, Gericke A. Corneal epithelial stem cells-physiology, pathophysiology and therapeutic options. Cells. 2021;10(9). doi: 10.3390/cells10092302
  13. Secker GA, Daniels JT. Limbal epithelial stem cells of the cornea. In: Melton D, Cowan CA, eds. StemBook. Cambridge (MA): Harvard Stem Cell Institute; 2008. doi: 10.3824/stembook.1.48.1
  14. Collin HB, Ratcliffe J, Collin SP. The functional anatomy of the cornea and anterior chamber in lampreys: insights from the pouched lamprey, Geotria australis (Geotriidae, Agnatha). Front Neuroanat. 2021;15:786729. doi: 10.3389/fnana.2021.786729
  15. West-Mays JA, Dwivedi DJ. The keratocyte: corneal stromal cell with variable repair phenotypes. Int J Biochem Cell Biol. 2006;38(10):1625-1631. doi: 10.1016/j.biocel.2006.03.010
  16. Massoudi D, Malecaze F, Galiacy SD. Collagens and proteoglycans of the cornea: importance in transparency and visual disorders. Cell Tissue Res. 2016;363(2):337-349. doi: 10.1007/s00441-015-2233-5
  17. Zavala J, Lopez Jaime GR, Rodriguez Barrientos CA, Valdez- Garcia J. Corneal endothelium: developmental strategies for regeneration. Eye (Lond). 2013;27(5):579-588. doi: 10.1038/eye.2013.15
  18. Sie NM, Yam GH, Soh YQ, et al. Regenerative capacity of the corneal transition zone for endothelial cell therapy. Stem Cell Res Ther. 2020;11(1):523. doi: 10.1186/s13287-020-02046-2
  19. Saghizadeh M, Kramerov AA, Svendsen CN, Ljubimov AV. Concise review: stem cells for corneal wound healing. Stem Cells. 2017;35(10):2105-2114. doi: 10.1002/stem.2667
  20. Hertsenberg AJ, Shojaati G, Funderburgh ML, Mann MM, Du Y, Funderburgh JL. Corneal stromal stem cells reduce corneal scarring by mediating neutrophil infiltration after wounding. PLoS One. 2017;12(3):e0171712. doi: 10.1371/journal.pone.0171712
  21. Hertsenberg AJ, Funderburgh JL. Stem cells in the cornea. Prog Mol Biol Transl Sci. 2015;134:25-41. doi: 10.1016/bs.pmbts.2015.04.002
  22. Espana EM, Birk DE. Composition, structure and function of the corneal stroma. Exp Eye Res. 2020;198:108137. doi: 10.1016/j.exer.2020.108137
  23. Gipson IK, Spurr-Michaud SJ, Tisdale AS. Anchoring fibrils form a complex network in human and rabbit cornea. Invest Ophthalmol Vis Sci. 1987;28(2):212-220.
  24. Gipson IK, Spurr-Michaud S, Tisdale A, Keough M. Reassembly of the anchoring structures of the corneal epithelium during wound repair in the rabbit. Invest Ophthalmol Vis Sci. 1989;30(3):425-434.
  25. Chen S, Mienaltowski MJ, Birk DE. Regulation of corneal stroma extracellular matrix assembly. Exp Eye Res. 2015;133:69-80. doi: 10.1016/j.exer.2014.08.001
  26. Michelacci YM,. Collagens and proteoglycans of the corneal extracellular matrix. Braz J Med Biol Res. 2003;36(8):1037-1046. doi: 10.1590/s0100-879x2003000800009
  27. Tanihara H, Inatani M, Koga T, Yano T, Kimura A. Proteoglycans in the eye. Cornea. 2002;21(7 Suppl):S62-69. doi: 10.1097/01.ico.0000263121.45898.d2
  28. Holland G, Pandit A, Sanchez-Abella L, et al. Artificial cornea: past, current, and future directions. Front Med (Lausanne). 2021;8:770780. doi: 10.3389/fmed.2021.770780
  29. Ilhan-Sarac O, Akpek EK. Current concepts and techniques in keratoprosthesis. Curr Opin Ophthalmol. 2005;16(4):246-250. doi: 10.1097/01.icu.0000172829.33770.d3
  30. Lin L, Jin X,. The development of tissue engineering corneal scaffold: which one the history will choose? Ann Eye Sci. 2018;3(1):6. doi: 10.21037/aes.2018.01.01
  31. Rohaina CM, Then KY, Ng AM, et al. Reconstruction of limbal stem cell deficient corneal surface with induced human bone marrow mesenchymal stem cells on amniotic membrane. Transl Res. 2014;163(3):200-210. doi: 10.1016/j.trsl.2013.11.004
  32. Ahearne M, Fernandez-Perez J, Masterton S, Madden PW, Bhattacharjee P. Designing scaffolds for corneal regeneration. Adv Funct Mater. 2020;30(44). doi: 10.1002/adfm.201908996
  33. Liu JB, Lawrence BD, Liu AH, Schwab IR, Oliveira LA, Rosenblatt MI. Silk fibroin as a biomaterial substrate for corneal epithelial cell sheet generation. Invest Ophthalmol Vis Sci. 2012;53(7):4130-4138. doi: 10.1167/iovs.12-9876
  34. Hussain Z, Pei RJ. Scaffold-free and scaffold-based cellular strategies and opportunities for cornea tissue engineering. Prog Biomed Eng. 2021;3(3). doi: 10.1088/2516-1091/ac12d7
  35. Xeroudaki M, T‍hangavelu M, Lennikov A, et al. A porous collagen-based hydrogel and implantation method for corneal stromal regeneration and sustained local drug delivery. Sci Rep. 2020;10(1):16936. doi: 10.1038/s41598-020-73730-9
  36. Szucs D, Fekete Z, Guba M, et al. Toward better drug development: three-dimensional bioprinting in toxicological research. Int J Bioprint. 2023;9(2):663. doi: 10.18063/ijb.v9i2.663
  37. Goh KL, Holmes DF. Collagenous extracellular matrix biomaterials for tissue engineering: lessons from the common sea urchin tissue. Int J Mol Sci. 2017;18(5). doi: 10.3390/ijms18050901
  38. Wang X. Advanced polymers for three-dimensional (3D) organ bioprinting. Micromachines (Basel). 2019;10(12). doi: 10.3390/mi10120814
  39. Guba M, Szűcs D, Kemény L, Veréb Z. Mesterséges bőrszövetek a kutatásban és a gyógyításban. Orvosi Hetilap. 2022;163(10):375-385. doi: 10.1556/650.2022.32330
  40. Angelats Lobo D, Ginestra P. Cell bioprinting: the 3D-bioplotter case. Materials (Basel). 2019;12(23). doi: 10.3390/ma12234005
  41. Elsawy MM, de Mel A,. Biofabrication and biomaterials for urinary tract reconstruction. Res Rep Urol. 2017;9:79-92. doi: 10.2147/RRU.S127209
  42. Kim H, Kang B, Cui XL, et al. Light-activated decellularized extracellular matrix-based bioinks for volumetric tissue analogs at the centimeter scale. Adv Funct Mater. 2021;31(32). doi: 10.1002/adfm.202011252
  43. Zhang MS, Yang F, Han DB, et al. 3D bioprinting of corneal decellularized extracellular matrix: GelMA composite hydrogel for corneal stroma engineering. Int J Bioprint. 2023;9(5):474-492. doi: 10.18063/ijb.774
  44. Lei M, Wang X. Biodegradable polymers and stem cells for bioprinting. Molecules. 2016;21(5). doi: 10.3390/molecules21050539
  45. Tao O, Kort-Mascort J, Lin Y, et al. The applications of 3D printing for craniofacial tissue engineering. Micromachines (Basel). 2019;10(7). doi: 10.3390/mi10070480
  46. Aljohani W, Ullah MW, Zhang X, Yang G. Bioprinting and its applications in tissue engineering and regenerative medicine. Int J Biol Macromol. 2018;107(Pt A):261-275. doi: 10.1016/j.ijbiomac.2017.08.171
  47. Borovjagin AV, Ogle BM, Berry JL, Zhang J. From microscale devices to 3D printing: advances in fabrication of 3D cardiovascular tissues. Circ Res. 2017;120(1):150-165. doi: 10.1161/CIRCRESAHA.116.308538
  48. Ozbolat IT, Hospodiuk M,. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321-343. doi: 10.1016/j.biomaterials.2015.10.076
  49. Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M. 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact Mater. 2018;3(2):144-156. doi: 10.1016/j.bioactmat.2017.11.008
  50. Wu Z, Su X, Xu Y, Kong B, Sun W, Mi S. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Sci Rep. 2016;6:24474. doi: 10.1038/srep24474
  51. Duffy GL, Liang H, Williams RL, Wellings DA, Black K. 3D reactive inkjet printing of poly-varepsilon-lysine/gellan gum hydrogels for potential corneal constructs. Mater Sci Eng C Mater Biol Appl. 2021;131:112476. doi: 10.1016/j.msec.2021.112476
  52. Dzobo K, Thomford NE, Senthebane DA, et al. Advances in regenerative medicine and tissue engineering: innovation and transformation of medicine. Stem Cells Int. 2018;2018:2495848. doi: 10.1155/2018/2495848
  53. Turnbull G, Clarke J, Picard F, et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater. 2018;3(3):278-314. doi: 10.1016/j.bioactmat.2017.10.001
  54. Keriquel V, Oliveira H, Remy M, et al. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci Rep. 2017;7(1):1778. doi: 10.1038/s41598-017-01914-x
  55. Varkey M, Visscher DO, van Zuijlen PPM, Atala A, Yoo JJ. Skin bioprinting: the future of burn wound reconstruction? Burns Trauma. 2019;7:4. doi: 10.1186/s41038-019-0142-7
  56. Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A. Additive manufacturing of biomaterials. Prog Mater Sci. 2018;93:45-111. doi: 10.1016/j.pmatsci.2017.08.003
  57. Sorkio A, Koch L, Koivusalo L, et al. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials. 2018;171:57-71. doi: 10.1016/j.biomaterials.2018.04.034
  58. Zennifer A, Manivannan S, Sethuraman S, Kumbar SG, Sundaramurthi D. 3D bioprinting and photocrosslinking: emerging strategies & future perspectives. Biomater Adv. 2022;134:112576. doi: 10.1016/j.msec.2021.112576
  59. Tomal W, Ortyl J. Water-soluble photoinitiators in biomedical applications. Polymers. 2020;12(5):1079. doi: 10.3390/polym12051073
  60. Barroso IA, Man K, Hall TJ, et al. Photocurable antimicrobial silk-based hydrogels for corneal repair. J Biomed Mater Res Part A. 2022;110(7):1401-1415. doi: 10.1002/jbm.a.37381
  61. He BB, Wang J, Xie MT, et al. 3D printed biomimetic epithelium/stroma bilayer hydrogel implant for corneal regeneration. Bioact Mater. 2022;17:234-247. doi: 10.1016/j.bioactmat.2022.01.034
  62. Caliari SR, Burdick JA. A practical guide to hydrogels for cell culture. Nat. Methods. 2016;13(5):405-414. doi: 10.1038/Nmeth.3839
  63. Liu F, Chen QH, Liu C, et al. Natural polymers for organ 3D bioprinting. Polymers. 2018;10(11):1278. doi: 10.3390/Polym10111278
  64. Ning LQ, Chen XB. A brief review of extrusion-based tissue scaffold bio-printing. Biotechnol J. 2017;12(8):1600671. doi: 10.1002/Biot.201600671
  65. Bhardwaj N, Chouhan D, Mandal BB. Tissue engineered skin and wound healing: current strategies and future directions. Curr Pharm Des. 2017;23(24):3455-3482. doi: 10.2174/1381612823666170526094606
  66. Chan EC, Kuo SM, Kong AM, et al. Three dimensional collagen scaffold promotes intrinsic vascularisation for tissue engineering applications. PLoS One. 2016;11(2):e0149799. doi: 10.1371/journal.pone.0149799
  67. Furtado M, Chen L, Chen Z, Chen A, Cui W. Development of fish collagen in tissue regeneration and drug delivery. Engineered Regeneration. 2022. 3(3): 217-231. doi: 10.1016/j.engreg.2022.05.002
  68. Cooperman L, Michaeli D. The immunogenicity of injectable collagen. II. A retrospective review of 72 tested and treated patients. J Am Acad Dermatol. 1984;10(4):647-651. doi: 10.1016/S0190-9622(84)80272-8
  69. Olsen D, Yang CL, Bodo M, et al. Recombinant collagen and gelatin for drug delivery. Adv Drug Deliv Rev. 2003;55(12):1547-1567. doi: 10.1016/j.addr.2003.08.008
  70. Nicholas MN, Jeschke MG, Amini-Nik S. Methodologies in creating skin substitutes. Cell Mol Life Sci. 2016;73(18): 3453-3472. doi: 10.1007/s00018-016-2252-8
  71. Koivusalo L, Kauppila M, Samanta S, et al. Tissue adhesive hyaluronic acid hydrogels for sutureless stem cell delivery and regeneration of corneal epithelium and stroma. Biomaterials. 2019;225:119516. doi: 10.1016/j.biomaterials.2019.119516
  72. Donderwinkel I, van Hest JCM, Cameron NR. Bio-inks for 3D bioprinting: recent advances and future prospects. Polym Chem. 2017;8(31):4451-4471. doi: 10.1039/c7py00826k
  73. Lawrence BD, Marchant JK, Pindrus MA, Omenetto FG, Kaplan DL. Silk film biomaterials for cornea tissue engineering. Biomaterials. 2009;30(7):1299-1308. doi: 10.1016/j.biomaterials.2008.11.018
  74. Yang JZ, Zhang YS, Yue K, Khademhosseini A. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater. 2017;57:1-25. doi: 10.1016/j.actbio.2017.01.036
  75. Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials. 2005;26(18):3919-3928. doi: 10.1016/j.biomaterials.2004.09.062
  76. Schoen F, Mitchell R. Tissues, the extracellular matrix, and cell–biomaterial interactions. In: Ratner BD, Hoffman Allan S, Schoen FJ, Lemons JE, eds. Biomaterials Science. 3rd ed. Oxford, UK; Waltham, USA: Academic Press; 2013:452-474. doi: 10.1016/B978-0-08-087780-8.00039-5
  77. Francisco AT, Mancino RJ, Bowles RD, et al. Injectable laminin-functionalized hydrogel for nucleus pulposus regeneration. Biomaterials. 2013;34(30):7381-7388. doi: 10.1016/j.biomaterials.2013.06.038
  78. Tayebi T, Baradaran-Rafii A, Hajifathali A, et al. Biofabrication of chitosan/chitosan nanoparticles/ polycaprolactone transparent membrane for corneal endothelial tissue engineering. Sci Rep. 2021;11(1):7060. doi: 10.1038/S41598-021-86340-W
  79. Ulag S, Ilhan E, Sahin A, et al. 3D printed artificial cornea for corneal stromal transplantation. Eur Polym J. 2020;133:109744. doi: 10.1016/j.eurpolymj.2020.109744
  80. Chen JS, Li QH, Xu JT, et al. Study on biocompatibility of complexes of collagen-chitosan-sodium hyaluronate and cornea. Artif Organs. 2005;29(2):104-113. doi: 10.1111/j.1525-1594.2005.29021.x
  81. Si ZZ, Wang X, Sun CH, et al. Adipose-derived stem cells: sources, potency, and implications for regenerative therapies. Biomed Pharmacother. 2019;114:108765. doi: 10.1016/J.Biopha.2019.108765
  82. Rodriguez-Fuentes DE, Fernandez-Garza LE, Samia-Meza JA, Barrera-Barrera SA, Caplan AI, Barrera-Saldaña HA. Mesenchymal stem cells current clinical applications: a systematic review. Arch Med Res. 2021;52(1):93-101. doi: 10.1016/j.arcmed.2020.08.006
  83. Irvine SA, Venkatraman SS. Bioprinting and differentiation of stem cells. Molecules. 2016;21(9):1188. doi: 10.3390/molecules21091188
  84. Tasnim N, De la Vega L, Anil Kumar S, et al. 3D bioprinting stem cell derived tissues. Cell Mol Bioeng. 2018;11(4):219-240. doi: 10.1007/s12195-018-0530-2
  85. Cui H, Nowicki M, Fisher JP, Zhang LG. 3D bioprinting for organ regeneration. Adv Healthc Mater. 2017;6(1). doi: 10.1002/adhm.201601118
  86. He P, Zhao J, Zhang J, et al. Bioprinting of skin constructs for wound healing. Burns Trauma. 2018;6:5. doi: 10.1186/s41038-017-0104-x
  87. Tasoglu S, Demirci U. Bioprinting for stem cell research. Trends Biotechnol. 2013;31(1):10-19. doi: 10.1016/j.tibtech.2012.10.005
  88. Goncalves ED, Campos M, Paris F, Gomes JAP, de Farias CC. Bullous keratopathy: etiopathogenesis and treatment. Arq Bras Oftalmol. 2008;71(6 Suppl):61-64. doi: 10.1590/s0004-27492008000700012
  89. Matthyssen S, Van den Bogerd B, Ni Dhubhghaill S, Koppen C, Zakaria N. Corneal regeneration: a review of stromal replacements. Acta Biomater. 2018;69:31-41. doi: 10.1016/j.actbio.2018.01.023
  90. Ruiz-Alonso S, Villate-Beitia I, Gallego I, et al. Current insights into 3D bioprinting: an advanced approach for eye tissue regeneration. Pharmaceutics. 2021;13(3). doi: 10.3390/pharmaceutics13030308
  91. Ghezzi CE, Rnjak-Kovacina J, Kaplan DL. Corneal tissue engineering: recent advances and future perspectives. Tissue Eng Part B Rev. 2015;21(3):278-287. doi: 10.1089/ten.TEB.2014.0397
  92. Mobaraki M, Abbasi R, Omidian Vandchali S, Ghaffari M, Moztarzadeh F, Mozafari M. Corneal repair and regeneration: current concepts and future directions. Front Bioeng Biotechnol. 2019;7:135. doi: 10.3389/fbioe.2019.00135
  93. Campos DFD, Rohde M, Ross M, et al. Corneal bioprinting utilizing collagen-based bioinks and primary human keratocytes. J Biomed Mater Res Part A. 2019;107(9): 1945-1953. doi: 10.1002/jbm.a.36702
  94. Boix-Lemonche G, Nagymihaly RM, Niemi EM, et al. Intracorneal implantation of 3D bioprinted scaffolds containing mesenchymal stromal cells using femtosecond-laser-assisted intrastromal keratoplasty. Macromol Biosci. 2023;23(7):e2200422. doi: 10.1002/mabi.202200422
  95. Murphy SV, De Coppi P, Atala A. Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng. 2020;4(4):370-380. doi: 10.1038/s41551-019-0471-7
  96. Blackburn BJ, Jenkins MW, Rollins AM, Dupps WJ. A review of structural and biomechanical changes in the cornea in aging, disease, and photochemical crosslinking. Front Bioeng Biotechnol. 2019;7:66. doi: 10.3389/fbioe.2019.00066
  97. Benzvi A, Rodrigues MM, Krachmer JH, Fujikawa LS. Immunohistochemical characterization of extracellular-matrix in the developing human cornea. Curr Eye Res. 1986;5(2):105-117. doi: 10.3109/02713688609015099
  98. Millin JA, Golub BM, Foster CS. Human basement membrane components of keratoconus and normal corneas. Invest Ophthalmol Vis Sci. 1986;27(4):604-607.
  99. Torricelli AA, Singh V, Santhiago MR, Wilson SE. The corneal epithelial basement membrane: structure, function, and disease. Invest Ophthalmol Vis Sci. 2013;54(9): 6390-6400. doi: 10.1167/iovs.13-12547
  100. Newsome DA, Foidart JM, Hassell JR, Krachmer JH, Rodrigues MM, Katz SI. Detection of specific collagen types in normal and keratoconus corneas. Invest Ophthalmol Vis Sci. 1981;20(6):738-750.
  101. Tsuchiya S, Tanaka M, Konomi H, Hayashi T. Distribution of specific collagen types and fibronectin in normal and keratoconus corneas. Jpn J Ophthalmol. 1986;30(1):14-31.
  102. Dua HS, Faraj LA, Said DG, Gray T, Lowe J. Human corneal anatomy redefined: a novel pre-Descemet’s layer (Dua’s layer). Ophthalmology. 2013;120(9):1778-1785. doi: 10.1016/j.ophtha.2013.01.018
  103. Tamura Y, Konomi H, Sawada H, Takashima S, Nakajima A. Tissue distribution of type VIII collagen in human adult and fetal eyes. Invest Ophthalmol Vis Sci. 1991;32(9): 2636-2644.
  104. Luo H, Lu Y, Wu T, Zhang M, Zhang Y, Jin Y. Construction of tissue-engineered cornea composed of amniotic epithelial cells and acellular porcine cornea for treating corneal alkali burn. Biomaterials. 2013;34(28):6748-6759. doi: 10.1016/j.biomaterials.2013.05.045
  105. Rafat M, Li F, Fagerholm P, et al. PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering. Biomaterials. 2008;29(29):3960-3972. doi: 10.1016/j.biomaterials.2008.06.017
  106. Alaminos M, Del Carmen Sanchez-Quevedo M, Munoz- Avila JI, et al. Construction of a complete rabbit cornea substitute using a fibrin-agarose scaffold. Invest Ophthalmol Vis Sci. 2006;47(8):3311-3317. doi: 10.1167/iovs.05-1647
  107. Fagerholm P, Lagali NS, Merrett K, et al. A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci Transl Med. 2010;2(46):46ra61. doi: 10.1126/scitranslmed.3001022
  108. Fagerholm P, Lagali NS, Ong JA, et al. Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold. Biomaterials. 2014;35(8):2420-2427. doi: 10.1016/j.biomaterials.2013.11.079
  109. Nishida K, Yamato M, Hayashida Y, et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med. 2004;351(12):1187-1196. doi: 10.1056/Nejmoa040455
  110. Kobayashi T, Kan K, Nishida K, Yamato M, Okano T. Corneal regeneration by transplantation of corneal epithelial cell sheets fabricated with automated cell culture system in rabbit model. Biomaterials. 2013;34(36):9010-9017. doi: 10.1016/j.biomaterials.2013.07.065
  111. Lawrence BD, Pan Z, Liu AH, Kaplan DL, Rosenblatt MI. Human corneal limbal epithelial cell response to varying silk film geometric topography in vitro. Acta Biomater. 2012;8(10):3732-3743. doi: 10.1016/j.actbio.2012.06.009
  112. Levis HJ, Massie I, Dziasko MA, Kaasi A, Daniels JT. Rapid tissue engineering of biomimetic human corneal limbal crypts with 3D niche architecture. Biomaterials. 2013;34(35):8860-8868. doi: 10.1016/j.biomaterials.2013.08.002
  113. Mi SL, Chen B, Wright B, Connon CJ. Ex vivo construction of an artificial ocular surface by combination of corneal limbal epithelial cells and a compressed collagen scaffold containing keratocytes. Tissue Eng Part A. 2010;16(6):2091-2100. doi: 10.1089/ten.tea.2009.0748
  114. Duan X, Sheardown H. Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions. Biomaterials. 2006;27(26):4608-4617. doi: 10.1016/j.biomaterials.2006.04.022
  115. Li FF, Carlsson D, Lohmann C, et al. Cellular and nerve regeneration within a biosynthetic extracellular matrix for corneal transplantation. Proc Natl Acad Sci USA. 2003;100(26):15346-15351. doi: 10.1073/pnas.2536767100
  116. Liu W, Merrett K, Griffith M, et al. Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials. 2008;29(9):1147-1158. doi: 10.1016/j.biomaterials.2007.11.011
  117. Torbet J, Malbouyres M, Builles N, et al. Orthogonal scaffold of magnetically aligned collagen lamellae for corneal stroma reconstruction. Biomaterials. 2007;28(29):4268-4276. doi: 10.1016/j.biomaterials.2007.05.024
  118. Builles N, Janin-Manificat H, Malbouyres M, et al. Use of magnetically oriented orthogonal collagen scaffolds for hemi-corneal reconstruction and regeneration. Biomaterials. 2010;31(32):8313-8322. doi: 10.1016/j.biomaterials.2010.07.066
  119. Crabb RA, Chau EP, Evans MC, Barocas VH, Hubel A. Biomechanical and microstructural characteristics of a collagen film-based corneal stroma equivalent. Tissue Eng. 2006;12(6):1565-1575. doi: 10.1089/ten.2006.12.1565
  120. Mimura T, Amano S, Yokoo S, et al. Tissue engineering of corneal stroma with rabbit fibroblast precursors and gelatin hydrogels. Mol Vis. 2008;14:1819-1828.
  121. Wu J, Rnjak-Kovacina J, Du Y, Funderburgh ML, Kaplan DL, Funderburgh JL. Corneal stromal bioequivalents secreted on patterned silk substrates. Biomaterials. 2014;35(12):3744-3755. doi: 10.1016/j.biomaterials.2013.12.078
  122. Gil ES, Mandal BB, Park SH, Marchant JK, Omenetto FG, Kaplan DL. Helicoidal multi-lamellar features of RGD-functionalized silk biomaterials for corneal tissue engineering. Biomaterials. 2010;31(34):8953-8963. doi: 10.1016/j.biomaterials.2010.08.017
  123. Fan T, Ma X, Zhao J, et al. Transplantation of tissue-engineered human corneal endothelium in cat models. Mol Vis. 2013;19:400-407.
  124. Honda N, Mimura T, Usui T, Amano S. Descemet stripping automated endothelial keratoplasty using cultured corneal endothelial cells in a rabbit model. Arch Ophthalmol. 2009;127(10):1321-1326. doi: 10.1001/archophthalmol.2009.253
  125. Watanabe R, Hayashi R, Kimura Y, et al. A novel gelatin hydrogel carrier sheet for corneal endothelial transplantation. Tissue Eng Part A. 2011;17(17-18):2213-2219. doi: 10.1089/ten.TEA.2010.0568
  126. Levis HJ, Peh GSL, Toh KP, et al. Plastic compressed collagen as a novel carrier for expanded human corneal endothelial cells for transplantation. PLoS One. 2012;7(11):e50993. doi: 10.1371/journal.pone.0050993
  127. Fuest M, Yam GHF, Mehta JS, Duarte Campos DF. Prospects and challenges of translational corneal bioprinting. Bioengineering. 2020;7(3):71. doi: 10.3390/bioengineering7030071
  128. Zhang B, Xue Q, Hu HY, et al. Integrated 3D bioprinting-based geometry-control strategy for fabricating corneal substitutes. J Zhejiang Univ Sci B. 2019;20(12):945-959. doi: 10.1631/jzus.B1900190
  129. Bektas CK, Hasirci V. Cell loaded 3D bioprinted GelMA hydrogels for corneal stroma engineering. Biomater Sci. 2020;8(1):438-449. doi: 10.1039/c9bm01236b
  130. Kong B, Chen Y, Liu R, et al. Fiber reinforced GelMA hydrogel to induce the regeneration of corneal stroma. Nat Commun. 2020;11(1):1435. doi: 10.1038/S41467-020-14887-9
  131. Kim H, Park MN, Kim J, Jang J, Kim H-K, Cho D-W. Characterization of cornea-specific bioink: high transparency, improved in vivo safety. J Tissue Eng. 2019;10. doi: 10.1177/2041731418823382
  132. Kim H, Jang J, Park J, et al. Shear-induced alignment of collagen fibrils using 3D cell printing for corneal stroma tissue engineering. Biofabrication. 2019;11(3). doi: 10.1088/1758-5090/Ab1a8b
  133. Kim KW, Lee SJ, Park SH, Kim JC. Ex vivo functionality of 3D bioprinted corneal endothelium engineered with ribonuclease 5-overexpressing human corneal endothelial cells. Adv Healthc Mater. 2018;7(18):e1800398. doi: 10.1002/adhm.201800398
Conflict of interest
The authors declare no conflicts of interest.
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing