AccScience Publishing / IJB / Volume 10 / Issue 1 / DOI: 10.36922/ijb.0159
RESEARCH ARTICLE

Development of a low-cost quad-extrusion 3D bioprinting system for multi-material tissue constructs

Ralf Zgeib1 Xiaofeng Wang1 Ahmadreza Zaeri1 Fucheng Zhang1 Kai Cao1 Robert C. Chang1*
Show Less
1 Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA
IJB 2024, 10(1), 0159 https://doi.org/10.36922/ijb.0159
Submitted: 10 May 2023 | Accepted: 29 June 2023 | Published: 29 August 2023
(This article belongs to the Special Issue 3D Bioprinting Hydrogels and Organ-On-Chip)
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

This study presents the development and characterization of a low-cost bioprinting system with a compact low-profile quad-extrusion bioprinting head for producing multi-material tissue constructs. The system, created by modifying an off-the-shelf three-dimensional (3D) printer, enables larger print volumes compared to extant systems. Incorporating gelatin methacrylate (GelMA) as a bioink model, the bioprinting system was systematically tested with two different printing techniques, namely the traditional in-air printing (IAP) mode along with an emerging support bath printing (SBP) paradigm. Structural fidelity was assessed by comparing printed structures under different conditions to the computer-aided design (CAD) model. To evaluate biological functionality, a placental model was created using HTR-8 trophoblasts known for their invasive phenotype. Biological assays of cell viability and invasion revealed that the cells achieved high cell proliferation rates and had over 93% cell viability for a 3-day incubation period. The multi-compartmental 3D-bioprinted in vitro placenta model demonstrates the potential for studying native cell phenotypes and specialized functional outcomes enabled by the multi-material capability of the quad-extrusion bioprinter (QEB). This work represents a significant advancement in bioprinting technology, allowing for the printing of complex and highly organized tissue structures at scale. Moreover, the system’s total build cost is only US$ 297, making it an affordable resource for researchers.

Keywords
3D bioprinting
Quad-extruder
Multi-material
Support bath printing
GelMA; Laponite B
Funding
The research was funded by the U.S. Army Medical Research Acquisition Activity under Award No. USAMRAA-W81XWH-19-1-0158. Any opinions, findings, and conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the U.S. Army Medical Research Acquisition Activity.
References
  1. Correia Carreira S, Begum R, Perriman AW. 3D bioprinting: The emergence of programmable biodesign. Adv Healthc Mater. 2020;9(15):1–14. doi: 10.1002/adhm.201900554
  2. Zhang Z, Wu C, Dai C, et al. A multi-axis robot-based bioprinting system supporting natural cell function preservation and cardiac tissue fabrication. Bioact Mater. 2022;18(February):138–150. doi: 10.1016/j.bioactmat.2022.02.009
  3. Ramiah P, du Toit LC, Choonara YE, Kondiah PPD, Pillay V. Hydrogel-based bioinks for 3D bioprinting in tissue regeneration. Front Mater. 2020;7(April):1–13. doi: 10.3389/fmats.2020.00076
  4. Mandrycky C, Wang Z, Kim K, Kim D-H. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016; 34(4): 422–434. doi: 10.1016/j.biotechadv.2015.12.011
  5. Zaeri A, Cao K, Zhang F, Chang RC. A review of the structural and physical properties that govern cell interactions with structured biomaterials enabled by additive manufacturing. Bioprinting. 2022; 26(January):e00201. doi: 10.1016/j.bprint.2022.e00201
  6. Moroni L, Boland T, Burdick JA, et al. Biofabrication: A guide to technology and terminology. Trends Biotechnol. 2018;36(4):384–402. doi: 10.1016/j.tibtech.2017.10.015
  7. Duan J, Cao Y, Shen Z, et al. 3D bioprinted GelMA/PEGDA hybrid scaffold for establishing in-vitro model of melanoma. J Microbiol Biotechnol. 2022;32(3):531–540. doi: 10.4014/jmb.2111.11003
  8. Rostam-Alilou AA, Jafari H, Zolfagharian A, Serjouei A, Bodaghi M. Experimentally validated vibro-acoustic modeling of 3D bio-printed grafts for potential use in human tympanic membrane regeneration. Bioprinting. 2022;25(January):e00186. doi: 10.1016/j.bprint.2021.e00186
  9. Naghieh S, Lindberg G, Tamaddon M, Liu C. Biofabrication strategies for musculoskeletal disorders: Evolution towards clinical applications. Bioengineering. 2021;8(9). doi: 10.3390/bioengineering8090123
  10. Yu HW, Kim BS, Lee JY, et al. Tissue printing for engineering transplantable human parathyroid patch to improve parathyroid engraftment, integration, and hormone secretion in vivo. Biofabrication. 2021;13(3). doi: 10.1088/1758-5090/abf740
  11. Hwang DG, Jo Y, Kim M, et al. A 3D bioprinted hybrid encapsulation system for delivery of human pluripotent stem cell-derived pancreatic islet-like aggregates. Biofabrication. 2022;14(1). doi: 10.1088/1758-5090/ac23ac
  12. Celikkin N, Presutti D, Maiullari F, et al. Tackling current biomedical challenges with frontier biofabrication and organ-on-a-chip technologies. Front Bioeng Biotechnol. 2021;9(September):1–26. doi: 10.3389/fbioe.2021.732130
  13. Zaeri A, Zgeib R, Cao K, Zhang F, Chang RC. Numerical analysis on the effects of microfluidic-based bioprinting parameters on the microfiber geometrical outcomes. Sci Rep. 2022;12(1):1–16. doi: 10.1038/s41598-022-07392-0
  14. Murphy CA, Lim KS, Woodfield TBF. Next evolution in organ-scale biofabrication: Bioresin design for rapid high-resolution vat polymerization. Adv Mater. 2022;34 (February). doi: 10.1002/adma.202107759
  15. Kang YJ. Microfluidic-based biosensor for blood viscosity and erythrocyte sedimentation rate using disposable fluid delivery system. Micromachines. 2020;11(2):1–25. doi: 10.3390/mi11020215
  16. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34(3):312–319. doi: 10.1038/nbt.3413
  17. Mironov V, Kasyanov V, Markwald RR. Organ printing: From bioprinter to organ biofabrication line. Curr Opin Biotechnol. 2011;22(5):667–673. doi: 10.1016/j.copbio.2011.02.006
  18. Kang DH, Louis F, Liu H, et al. Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting. Nat Commun. 2021;12(1). doi: 10.1038/s41467-021-25236-9
  19. Ramachandraiah K. Potential development of sustainable 3d-printed meat analogues: A review. Sustain. 2021; 13(2):1–20. doi: 10.3390/su13020938
  20. Warburton L, Lou L, Rubinsky B. A modular three-dimensional bioprinter for printing porous scaffolds for tissue engineering. J Heat Transfer. 2022;144(3):1–7. doi: 10.1115/1.4053198
  21. Tavafoghi M, Darabi MA, Mahmoodi M, et al. Multimaterial bioprinting and combination of processing techniques towards the fabrication of biomimetic tissues and organs. Biofabrication. 2021;13(4). doi: 10.1088/1758-5090/ac0b9a
  22. Tong A, Pham QL, Abatemarco P, et al. Review of low-cost 3D bioprinters: State of the market and observed future trends. SLAS Technol. 2021;26(4):333–366. doi: 10.1177/24726303211020297
  23. Choudhury D, Anand S, Naing MW. The arrival of commercial bioprinters - Towards 3D bioprinting revolution! Int J Bioprinting. 2018;4(2):1–20. doi: 10.18063/IJB.v4i2.139
  24. Ravanbakhsh H, Karamzadeh V, Bao G, Luc Mongeau, Juncker D, Zhang YS. Emerging technologies in multi-material bioprinting. Adv Mater. 2021;33(49). doi: 10.1002/adma.202104730.
  25. Zhang YS, Haghiashtiani G, Hübscher T, Kelly DJ, Malda J. 3D extrusion bioprinting. Nat Rev Methods Prim. 2021;1(1):75. doi: 10.1038/s43586-021-00073-8
  26. Shen EM, McCloskey KE. Affordable, high-resolution bioprinting with embedded concentration gradients. Bioprinting. 2021;21(October 2020):e00113. doi: 10.1016/j.bprint.2020.e00113
  27. Kahl M, Gertig M, Hoyer P, Friedrich O, Gilbert DF. Ultra-low-cost 3D bioprinting: Modification and application of an off-the-shelf desktop 3D-printer for biofabrication. Front Bioeng Biotechnol. 2019;7(JUL):1–12. doi: 10.3389/fbioe.2019.00184
  28. Wagner M, Karner A, Gattringer P, Buchegger B, Hochreiner A. A super low-cost bioprinter based on DVD-drive components and a raspberry pi as controller. Bioprinting. 2021;23(November 2020):e00142. doi: 10.1016/j.bprint.2021.e00142
  29. Pusch K, Hinton TJ, Feinberg AW. Large volume syringe pump extruder for desktop 3D printers. HardwareX. 2018;3:49–61. doi: 10.1016/j.ohx.2018.02.001
  30. Krige A, Haluška J, Rova U. Design and implementation of a low cost bio-printer modification, allowing for switching between plastic and gel extrusion. HardwareX. 2021;9:e00186. doi: 10.1016/j.ohx.2021.e00186
  31. Yenilmez B, Temirel M, Knowlton S, Lepowsky E. Development and characterization of a low-cost 3D bioprinter. Bioprinting. 2019;13(December 2018):e00044. doi: 10.1016/j.bprint.2019.e00044
  32. Bessler N, Ogiermann D, Buchholz MB, Zhang F, Cao K, Chang RC. Nydus one syringe extruder (NOSE): A Prusa i3 3D printer conversion for bioprinting applications utilizing the FRESH-method. HardwareX. 2019;6:e00069. doi: 10.1016/j.ohx.2019.e00069
  33. Tashman JW, Shiwarski DJ, Feinberg AW. A high performance open-source syringe extruder optimized for extrusion and retraction during FRESH 3D bioprinting. HardwareX. 2021;9(2021):e00170. doi: 10.1016/j.ohx.2020.e00170
  34. Garciamendez-Mijares CE, Agrawal P, García Martínez G, Juárez EC. State-of-art affordable bioprinters: A guide for the DiY community. Appl Phys Rev. 2021;8(3):47818. doi: 10.1063/5.0047818
  35. Ding H, Illsley NP, Chang RC. 3D bioprinted GelMA based models for the study of trophoblast cell invasion. Sci Rep. 2019;9(1):1–14. doi: 10.1038/s41598-019-55052-7
  36. Salahuddin B, Wang S, Sangian D, Aziz S. Hybrid gelatin hydrogels in nanomedicine applications. ACS Appl Bio Mater. 2021;4(4):2886–2906. doi: 10.1021/acsabm.0c01630
  37. Li H, Tan YJ, Kiran R, Shu Beng T, Kun Z. Submerged and non-submerged 3D bioprinting approaches for the fabrication of complex structures with the hydrogel pair GelMA and alginate/methylcellulose. Addit Manuf. 2021;37(October 2020):101640. doi: 10.1016/j.addma.2020.101640
  38. S. Alsoufi M, W. Alhazmi M, K. Suker D, et al. Experimental characterization of the influence of nozzle temperature in FDM 3D printed pure PLA and advanced PLA+. Am J Mech Eng. 2019;7(2):45–60. doi: 10.12691/ajme-7-2-1
  39. Zhu W, Qu X, Zhu J, et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials. 2017;124(April 2017):106–115. doi: 10.1016/j.biomaterials.2017.01.042.Direct
  40. Ding H, Chang RC. Printability study of bioprinted tubular structures using liquid hydrogel precursors in a support bath. Appl Sci. 2018;8(3). doi: 10.3390/app8030403
  41. Gu Y, Schwarz B, Forget A, Barbero A, Martin I, Prasad Shastri V. Advanced bioink for 3D bioprinting of complex free-standing structures with high stiffness. Bioengineering. 2020;7(4):1–15. doi: 10.3390/bioengineering7040141
  42. Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J. Printability and shape fidelity of bioinks in 3D bioprinting. Chem Rev. 2020;120(19):11028–11055. doi: 10.1021/acs.chemrev.0c00084
  43. Bonatti AF, Chiesa I, Vozzi G, De Maria C. Open-source CAD-CAM simulator of the extrusion-based bioprinting process. Bioprinting. 2021;24(July):e00172. doi: 10.1016/j.bprint.2021.e00172
  44. Paxton N, Smolan W, Böck T, Melchels F, Groll J, Jungst T. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication. 2017;9(4). doi: 10.1088/1758-5090/aa8dd8
  45. Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A. Bioink properties before, during and after 3D bioprinting. Biofabrication. 2016;8(3). doi: 10.1088/1758-5090/8/3/032002
  46. Suntornnond R, An J, Chua CK. Bioprinting of thermoresponsive hydrogels for next generation tissue engineering: A review. Macromol Mater Eng. 2017;302(1). doi: 10.1002/mame.201600266
  47. Li H, Zheng H, Tan YJ, Tor SB, Zhou K. Development of an ultrastretchable double-network hydrogel for flexible strain sensors. ACS Appl Mater Interfaces. 2021;13(11): 12814–12823. doi: 10.1021/acsami.0c19104
  48. Boularaoui S, Al Hussein G, Khan KA, Christoforou N. An overview of extrusion-based bioprinting with a focus on induced shear stress and its effect on cell viability. Bioprinting. 2020;20(August):e00093. doi: 10.1016/j.bprint.2020.e00093
  49. Liu W, Heinrich MA, Zhou Y, et al. Extrusion bioprinting of shear-thinning gelatin methacryloyl bioinks. Adv Healthc Mater. 2017;6(12):1–11. doi: 10.1002/adhm.201601451
  50. Emmermacher J, Spura D, Cziommer J, et al. Engineering considerations on extrusion-based bioprinting: interactions of material behavior, mechanical forces and cells in the printing needle. Biofabrication. 2020;12(2). doi: 10.1088/1758-5090/ab7553
  51. Han S, Kim CM, Jin S, Kim TY. Study of the process-induced cell damage in forced extrusion bioprinting. Biofabrication. 2021;13(3). doi: 10.1088/1758-5090/ac0415
  52. Poologasundarampillai G, Haweet A, Jayash SN, Morgan G, Moore JE. , Alessia C. Real-time imaging and analysis of cell-hydrogel interplay within an extrusion-bioprinting capillary. Bioprinting. 2021;23(May):e00144. doi: 10.1016/j.bprint.2021.e00144
  53. Boularaoui S, Shanti A, Lanotte M, et al. Nanocomposite conductive bioinks based on low-concentration GelMA and MXene nanosheets/gold nanoparticles providing enhanced printability of functional skeletal muscle tissues. ACS Biomater Sci Eng. 2021;7(12):5810–5822. doi: 10.1021/acsbiomaterials.1c01193
  54. Yin J, Yan M, Wang Y, Fu J, Suo H. 3D bioprinting of low-concentration cell-laden gelatin methacrylate (GelMA) bioinks with a two-step cross-linking strategy. ACS Appl Mater Interfaces. 2018;10(8):6849–6857. doi: 10.1021/acsami.7b16059
  55. Xu W, Molino BZ, Cheng F, et al. On low-concentration inks formulated by nanocellulose assisted with gelatin methacrylate (GelMA) for 3D printing toward wound healing application. ACS Appl Mater Interfaces. 2019;11(9):8838–8848. doi: 10.1021/acsami.8b21268
  56. Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016;8(3):035020. doi: 10.1088/1758-5090/8/3/035020
  57. Abou-Kheir W, Barrak J, Hadadeh O, Daoud G. HTR- 8/SVneo cell line contains a mixed population of cells. Placenta. 2017;50:1–7. doi: 10.1016/j.placenta.2016.12.007
  58. Msheik H, Azar J, El Sabeh M, Abou-Kheir W, Daoud G. HTR- 8/SVneo: A model for epithelial to mesenchymal transition in the human placenta. Placenta. 2020;90(September 2019):90–97. doi: 10.1016/j.placenta.2019.12.013
  59. 59. Kuo CY, Eranki A, Placone JK, et al. Development of a 3D printed, bioengineered placenta model to evaluate the role of trophoblast migration in preeclampsia. ACS Biomater Sci Eng. 2016;2(10):1817–1826. doi: 10.1021/acsbiomaterials.6b00031
Conflict of interest
The authors declare they have no competing interests.
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing