AccScience Publishing / GTM / Online First / DOI: 10.36922/GTM025390077
REVIEW ARTICLE

The sinonasal microbiome, host defense peptides, and cancer risk: Decoding the immune system’s dilemma in chronic rhinosinusitis

Ghazaleh Omidvar1 Shirin Esmaili Dolabinezhad1 Marjan Sistani1 Saeid Besharati1,2*
Show Less
1 Nursing Research Center of Respiratory Diseases, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medicine Sciences, Tehran, Iran
2 Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
Global Translational Medicine, 025390077 https://doi.org/10.36922/GTM025390077
Received: 27 September 2025 | Revised: 18 November 2025 | Accepted: 4 December 2025 | Published online: 2 January 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Chronic rhinosinusitis (CRS) is a prevalent and debilitating condition characterized by persistent inflammation of the sinonasal mucosa. Despite advances in understanding its pathophysiology, the role of microbial communities and their interactions with the host immune system remains poorly understood. This review aims to elucidate the complex interplay between microbial dysbiosis, host immune responses, the dysregulated, cancer-like behavior of inflamed sinus tissue, and the production of antimicrobial peptides (AMPs) and lipids in CRS. A systematic literature review was conducted across databases such as PubMed, Scopus, and Web of Science. Keywords included “chronic rhinosinusitis,” “microbial interactions,” “antimicrobial peptides,” “antimicrobial lipids,” and “immune system.” Studies published between 2020 and 2025 were included, focusing on microbial–immune interactions, AMPs, and lipids in CRS. Data were synthesized to identify key mechanisms and therapeutic implications. Microbial dysbiosis in CRS is associated with altered immune responses and impaired production of AMPs and lipids. Studies demonstrate that microbial interactions can either exacerbate or mitigate inflammation, depending on the balance between pathogenic and commensal species. Immune system dysregulation, particularly in T-cell responses and cytokine production, further exacerbates chronic inflammation. Emerging therapies, such as probiotics and AMP-based treatments, show promise in restoring microbial-immune balance. Future research should focus on developing targeted therapies that restore microbial balance and enhance innate immune defenses. Understanding the role of microbial interactions in CRS offers new avenues for personalized treatment strategies, potentially improving outcomes for patients with this challenging condition.

Keywords
Chronic rhinosinusitis
Microbial interactions
Antimicrobial peptides
Antimicrobial lipids
Immune system
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Michalik M, Krawczyk B. Chronic rhinosinusitis-microbiological etiology, potential genetic markers, and diagnosis. Int J Mol Sci. 2024;25(6):3201. doi: 10.3390/ijms25063201

 

  1. Zengin G, Ahmed S, Turecka K, et al. Bioactive and in silico analysis of Polygonum equisetiforme reveals potent antioxidant, anticancer, and enzyme-inhibitory properties. Microchem J. 2025;:114651. doi: 10.1016/j.microc.2025.114651

 

  1. Soler ZM, Nash S, Lane AP, et al. Reduced sense of smell in patients with severe chronic rhinosinusitis and its implications for diagnosis and management: A narrative review. Adv Ther. 2024;41:4384-4395. doi: 10.1007/s12325-024-02984-w

 

  1. Michalik M, Samet A, Dmowska-Koroblewska A, et al. An overview of the application of systems biology in an understanding of chronic rhinosinusitis (CRS) development. J Personal Med. 2020;10(4):245. doi: 10.3390/jpm10040245

 

  1. Besharati S, Kalaleh AR. Personalized nursing and precision nursing: A concept of the future of the health model. J Prev Diagn Treat Strategies Med. 2024;3(4):227-234. doi: 10.4103/jpdtsm.jpdtsm_48_24

 

  1. Farnia P, Besharati S, Farina P, et al. The role of efflux pumps transporter in multi-drug resistant tuberculosis: Mycobacterial memberane protein (MmpL5). Int J Mycobacteriol. 2024;13(1):7-14. doi: 10.4103/ijmy.ijmy_37_24

 

  1. Shaghayegh G, Cooksley C, Ramezanpour M, Wormald PJ, Psaltis AJ, Vreugde S. Chronic rhinosinusitis, S. aureus biofilm and secreted products, inflammatory responses, and disease severity. Biomedicines. 2022;10(6):1362. doi: 10.3390/biomedicines10061362

 

  1. Besharati S. The Expanding Antibiotic Resistance: The Requirement of New Therapeutic Strategy for the Development of New Anti-Infective. London: IntechOpen; 2024. doi: 10.5772/intechopen.1006935

 

  1. Varahram M, Besharati S, Farnia P, et al. Correlation of single-nucleotide polymorphism at interferon-gamma R1 (at position- 56) in positive purified protein derivative health workers with COVID-19 infection. Int J Mycobacteriol. 2022;11(3):318-322. doi: 10.4103/ijmy.ijmy_133_22

 

  1. Cetiz MV, Ahmed S, Zengin G, Sinan KI, Emre G, Dolina K, et al. Bioinformatic and experimental approaches to uncover the bio-potential of Mercurialis annua extracts based on chemical constituents. J Mol Liquids. 2025;427:127390. doi: 10.1016/j.molliq.2025.127390

 

  1. Hoggard M, Wagner Mackenzie B, Jain R, Taylor MW, Biswas K, Douglas RG. Chronic rhinosinusitis and the evolving understanding of microbial ecology in chronic inflammatory mucosal disease. Clin Microbiol Rev. 2017;30(1):321-348. doi: 10.1128/cmr.00060-16

 

  1. Wu D, Mueller SK, Nocera AL, Finn K, Libermann TA, Bleier BS. TREM-1 neutrophil activation pathway is suppressed in eosinophilic nasal polyps. Am J Rhinol Allergy. 2018;32(5):359-368. doi: 10.1177/1945892418782233

 

  1. Zhang C, Liu H, Sun L, et al. An overview of host‐derived molecules that interact with gut microbiota. Imeta. 2023;2(2):e88. doi: 10.1002/imt2.88

 

  1. Huntley KS, Raber J, Fine L, Bernstein JA. Influence of the microbiome on chronic rhinosinusitis with and without polyps: An evolving discussion. Front Allergy. 2021;2:737086. doi: 10.3389/falgy.2021.737086

 

  1. Farnia P, Farnia P, Ghanavi J, Ayoubi S, Besharati S, Velayati AA. Comparison of Proline-glutamate-proline-glutamate-polymorphic GC-rich sequences family protein Wag22 (Rv1759c), PE_PGRS31 (Rv1768), PE_PGRS32 (Rv1803), and PE_PGRS33 gene (Rv1818c) in exponential state and under in vitro model of latency in same clinical isolates of Mycobacterium tuberculosis: Frameshift mutation in extensively drug-resistant and totally drug-resistant tuberculosis bacilli. Biomed Biotechnol Res J. 2023;7(4):621-632. doi: 10.4103/bbrj.bbrj_271_23

 

  1. He Y, Fu Y, Wu Y, Zhu T, Li H. Pathogenesis and treatment of chronic rhinosinusitis from the perspective of sinonasal epithelial dysfunction. Front Med. 2023;10:1139240. doi: 10.3389/fmed.2023.1139240

 

  1. Huang ZQ, Liu J, Sun LY, et al. Updated epithelial barrier dysfunction in chronic rhinosinusitis: Targeting pathophysiology and treatment response of tight junctions. Allergy. 2024;79(5):1146-1165. doi: 10.1111/all.16064

 

  1. Czerwaty K, Piszczatowska K, Brzost J, Ludwig N, Szczepański MJ, Dżaman K. Immunological aspects of chronic rhinosinusitis. Diagnostics. 2022;12(10):2361. doi: 10.3390/diagnostics12102361

 

  1. Mojahed M, Besharati S, Farzanegan B, et al. Identification of operational errors in the stages of the hemovigilance program with the guidance of the global trigger tool and comparing it with the reported errors. Sci J Iran Blood Transfus Organ. 2024;21(4):320-332. doi: 10.61186/bloodj.21.4.330

 

  1. Duarte-Mata DI, Salinas-Carmona MC. Antimicrobial peptides immune modulation role in intracellular bacterial infection. Front Immunol. 2023;14:1119574. doi: 10.3389/fimmu.2023.1119574

 

  1. Zhang C, Yang M. The role and potential application of antimicrobial peptides in autoimmune diseases. Front Immunol. 2020;11:859. doi: 10.3389/fimmu.2020.00859

 

  1. Johnstone KF, Herzberg MC. Antimicrobial peptides: Defending the mucosal epithelial barrier. Front Oral Health. 2022;3:958480. doi: 10.3389/froh.2022.958480

 

  1. Lee SM, Keum HL, Sul WJ. Bacterial crosstalk via antimicrobial peptides on the human skin: Therapeutics from a sustainable perspective. J Microbiol. 2023;61(1):1-11. doi: 10.1007/s12275-022-00002-8

 

  1. Yadav N, Chauhan VS. Advancements in peptide-based antimicrobials: A possible option for emerging drug-resistant infections. Adv Colloid Interface Sci. 2024;333:103282. doi: 10.1016/j.cis.2024.103282

 

  1. Carmona-Ribeiro AM. Antimicrobial peptides and their assemblies. Fut Pharmacol. 2023;3(4):763-88. doi: 10.3390/futurepharmacol3040047

 

  1. Somase V, Desai SA, Patel VP, Patil V, Bhosale K. Antimicrobial peptides: Potential alternative to antibiotics and overcoming limitations for future therapeutic applications. Int J Pept Res Thera. 2024;30(4):45. doi: 10.1007/s10989-024-10623-9

 

  1. Nguyen TA. Pseudomonas aeruginosa and Tobramycin Effects on Aspergillus fumigatus Infection in Cystic Fibrosis Airway. Birmingham: The University of Alabama; 2024.

 

  1. Sandín García D. Design and Optimization of New Antimicrobial Peptides Against Gram-Negative Bacteria. [Doctoral Thesis]; 2023.

 

  1. Liu Q, Ruan K, An Z, et al. Updated review of research on the role of the gut microbiota and microbiota-derived metabolites in acute pancreatitis progression and inflammation-targeted therapy. Int J Biol Sci. 2025;21(3):1242. doi: 10.7150/ijbs.108858

 

  1. Saha S, Barik D, Biswas D. AMPs as host-directed immunomodulatory agents against skin infections caused by opportunistic bacterial pathogens. Antibiotics. 2024;13(5):439. doi: 10.3390/antibiotics13050439

 

  1. Kumaresan V, Kamaraj Y, Subramaniyan S, Punamalai G. Understanding the dynamics of human defensin antimicrobial peptides: Pathogen resistance and commensal induction. Appl Biochem Biotechnol. 2024;196:6993-7024. doi: 10.1007/s12010-024-04893-8

 

  1. Xie X, Xuan L, Zhao Y, Wang X, Zhang L. Diverse endotypes of chronic rhinosinusitis and clinical implications. Clin Rev Allergy Immunol. 2023;65(3):420-432. doi: 10.1007/s12016-023-08976-y

 

  1. Szaleniec J, Gibała A, Pobiega M, et al. Exacerbations of chronic rhinosinusitis-microbiology and perspectives of phage therapy. Antibiotics. 2019;8(4):175. doi: 10.3390/antibiotics8040175

 

  1. Drago L, Pignataro L, Torretta S. Microbiological aspects of acute and chronic pediatric rhinosinusitis. J Clin Med. 2019;8(2):149. doi: 10.3390/jcm8020149

 

  1. Rom D, Bassiouni A, Eykman E, et al. The association between disease severity and microbiome in chronic rhinosinusitis. Laryngoscope. 2019;129(6):1265-1273. doi: 10.1002/lary.27726

 

  1. Vanderpool EJ, Rumbaugh KP. Host-microbe interactions in chronic rhinosinusitis biofilms and models for investigation. Biofilm. 2023;6:100160. doi: 10.1016/j.bioflm.2023.100160

 

  1. Brook I. Microbiology of chronic rhinosinusitis. Eur J Clin Microbiol Infect Dis. 2016;35:1059-1068. doi: 10.1007/s10096-016-2640-x

 

  1. Lucas SK. Bacterial Communities Associated with Chronic Rhinosinusitis and the Impact of Mucin Degradation on Staphylococcus aureus Physiology. Minnesota: University of Minnesota; 2020.

 

  1. Shin SH, Ye MK, Lee DW, Geum SY. Immunopathologic role of fungi in chronic rhinosinusitis. Int J Mol Sci. 2023;24(3):2366. doi: 10.3390/ijms24032366

 

  1. Kato A, Schleimer RP, Bleier BS. Mechanisms and pathogenesis of chronic rhinosinusitis. J Allergy Clin Immunol. 2022;149(5):1491-1503. doi: 10.1016/j.jaci.2022.02.016

 

  1. Huang F, Liu F, Zhen X, Gong S, Chen W, Song Z. Pathogenesis, diagnosis, and treatment of infectious rhinosinusitis. Microorganisms. 2024;12(8):1690. doi: 10.3390/microorganisms12081690

 

  1. Tyler MA, Lam K, Marino MJ, et al, editors. Revisiting the Controversy: The Role of Fungi in Chronic Rhinosinusitis. International Forum of Allergy and Rhinology. Hoboken: Wiley Online Library; 2021. doi: 10.1002/alr.22826

 

  1. Lee HS, Volpe SJ, Chang EH. The role of viruses in the inception of chronic rhinosinusitis. Clin Exp Otorhinolaryngol. 2022;15(4):310-318. doi: 10.21053/ceo.2022.01004

 

  1. De Rudder C, Calatayud Arroyo M, Lebeer S, Van de Wiele T. Modelling upper respiratory tract diseases: Getting grips on host-microbe interactions in chronic rhinosinusitis using in vitro technologies. Microbiome. 2018;6:75. doi: 10.1186/s40168-018-0462-z

 

  1. Sedaghat AR. Chronic rhinosinusitis. In: Infections of the Ears, Nose, Throat, and Sinuses. Germany: Springer; 2018. p. 155-168. doi: 10.1007/978-3-319-74835-1_13

 

  1. Besharati S. The expanding antibiotic resistance: The requirement. In: Innate Immunity-New Perspectives and Therapeutic Opportunities: New Perspectives and Therapeutic Opportunities. Germany: BoD - Books on Demand; 2025. p. 49. doi: 10.5772/intechopen.1006935

 

  1. Goggin RK, Bennett CA, Cooksley CM, et al. Viral presence and the bacterial microbiome in chronic rhinosinusitis. Aust J Otolaryngol. 2022;5:1-8. doi: 10.21037/ajo-21-53

 

  1. Prasad SV, Fiedoruk K, Daniluk T, Piktel E, Bucki R. Expression and function of host defense peptides at inflammation sites. Int J Mol Sci. 2019;21(1):104. doi: 10.3390/ijms21010104

 

  1. Hildenbrand T, Milger-Kneidinger K, Baumann I, Weber R. The diagnosis and treatment of chronic rhinosinusitis. Dtsch Ärzteblatt Int. 2024;121(19):643. doi: 10.3238/arztebl.m2024.0167

 

  1. Albu S. Chronic Rhinosinusitis-An Update on Epidemiology, Pathogenesis and Management. Switzerland: MDPI; 2020. p. 2285. doi: 10.3390/jcm9072285

 

  1. Besharati S, Aghajani J, Farnia P, et al. Association between the Vitamin D receptor gene (FokI, BsmI, ApaI, and TaqI) polymorphism in health-care workers and susceptibility to COVID-19. Biomed Biotechnol Res J. 2023;7(3):404-410. doi: 10.4103/bbrj.bbrj_133_23

 

  1. Bachert C, Zhang N. Medical algorithm: Diagnosis and treatment of chronic rhinosinusitis. Allergy. 2020;75(1):240-242. doi: 10.1111/all.13823

 

  1. Caetano JVB, Valera FCP, Anselmo-Lima WT, Tamashiro E. Non-antibiotic antimicrobial agents for chronic rhinosinusitis: A narrative review. Braz J Otorhinolaryngol. 2024;90:101436. doi: 10.1016/j.bjorl.2024.101436

 

  1. Hopkins C, Williamson E, Morris S, et al. Antibiotic usage in chronic rhinosinusitis: Analysis of national primary care electronic health records. Rhinology. 2019;57(6):420-429. doi: 10.4193/Rhin19.136

 

  1. Karunasagar A, Garag SS, Appannavar SB, Kulkarni RD, Naik AS. Bacterial biofilms in chronic rhinosinusitis and their implications for clinical management. Indian J Otolaryngol Head Neck Surg. 2018;70:43-48. doi: 10.1007/s12070-017-1208-0

 

  1. Besharati S, Farnia P, Farnia P, Ghanavi J, Velayati AA. Investigation of the hypothesis of biofilm formation in coronavirus (COVID-19). Biomed Biotechnol Res J. 2020;4(Suppl 1):S99-S100. doi: 10.4103/bbrj.bbrj_126_20

 

  1. Nowicki A, Nowicki N, Nowicki S, et al. Chronic Sinusitis: The Empiric treatment Strikes Back: Is CRS Directly Caused by Infectious Agent(s)? Rhinosinusitis. London: IntechOpen; 2019. doi: 10.5772/intechopen.84260

 

  1. Kucuksezer UC, Ozdemir C, Akdis M, Akdis CA. Chronic rhinosinusitis: Pathogenesis, therapy options, and more. Expert Opin Pharmacother. 2018;19(16):1805-1815. doi: 10.1080/14656566.2018.1527904

 

  1. Besharati S, Owlia P. Evaluation of biofilm production capacity in salmonella isolated from chicken meat in Tehran municipally daily fruit and vegetable markets. Daneshvar Med. 2020;28(1):62-72.

 

  1. Kong IG, Kim DW. Pathogenesis of recalcitrant chronic rhinosinusitis: The emerging role of innate immune cells. Immune Netw. 2018;18(2):1-12. doi: 10.4110/in.2018.18.e6

 

  1. Huang Y, Wang M, Wang C, Zhang L. Antimicrobial peptides and proteins in chronic rhinosinusitis. Lin Chuang er bi yan hou tou Jing wai ke za zhi= J Clin Otorhinol Head Neck Surg. 2021;35(2):185-188. doi: 10.13201/j.issn.2096-7993.2021.02.022

 

  1. Moradi M, Besharati S, Moghaddam MM, Fasihi- Ramandi M, Azad ZM, Mirnejad R. A concise review on the antimicrobial peptides and their critical activity against intracellular targets of bacteria. J Microbiol Biotechnol Food Sci. 2023;12(4):e6006. doi: 10.55251/jmbfs.6006

 

  1. Zabolotna D, Maliarenko Y. Bacterial biofilms in chronic rhinosinusitis. Clinical role and current therapeutic strategies. Mikrobiol Zhurnal. 2024;86(6):115-28. doi: 10.15407/microbiolj86.06.115

 

  1. Fouladi MD, Besharati S, Farnia P, Khosravi A. A concise review of the effect of efflux pump on biofilm intensity in bacteria with a special view to Mycobacterium. J Prev Diagn Treat Strategies Med. 2024;3(1):1-5. doi: 10.4103/jpdtsm.jpdtsm_119_23

 

  1. Wongkaewkhiaw S, Taweechaisupapong S, Thanaviratananich S, et al. D-LL-31 enhances biofilm-eradicating effect of currently used antibiotics for chronic rhinosinusitis and its immunomodulatory activity on human lung epithelial cells. PLoS One. 2020;15(12):e0243315. doi: 10.1371/journal.pone.0243315

 

  1. Mahdavinia M, Keshavarzian A, Tobin MC, Landay A, Schleimer RP. A comprehensive review of the nasal microbiome in chronic rhinosinusitis (CRS). Clin Exp Allergy. 2016;46(1):21-41. doi: 10.1111/cea.12666

 

  1. Mollenhauer J, End C, Renner M, Lyer S, Poustka A. DMBT1 as an archetypal link between infection, inflammation, and cancer. Inmunologia. 2007;26(4):193-209. doi: 10.1016/S0213-9626(07)70089-6

 

  1. Rosenstiel P, Sina C, End C, et al. Regulation of DMBT1 via NOD2 and TLR4 in intestinal epithelial cells modulates bacterial recognition and invasion. J Immunol. 2007;178(12):8203-8211. doi: 10.4049/jimmunol.178.12.8203

 

  1. Liu N, Zhang Q, Li J, et al. The antimicrobial peptide Microcin C7 inhibits the growth of Porphyromonas gingivalis and improves the perodontal status in a rat model. J Appl Microbiol. 2024;135(11):lxae247. doi: 10.1093/jambio/lxae314

 

  1. Di YP, Kuhn JM, Mangoni ML. Lung antimicrobial proteins and peptides: From host defense to therapeutic strategies. Physiol Rev. 2024;104(4):1643-1677. doi: 10.1152/physrev.00039.202

 

  1. Jindal HM. Hybrid Peptides Derived from Natural Antimicrobial Peptides, Indolicidin and Ranalexin, Exhibit Potent Antimicrobial Activities Against Streptococcus Pneumoniae in vitro and in vivo. Malaysia: University of Malaysia; 2018.

 

  1. Geitani R, Moubareck CA, Xu Z, Karam Sarkis D, Touqui L. Expression and roles of antimicrobial peptides in innate defense of airway mucosa: Potential implication in cystic fibrosis. Front Immunol. 2020;11:1198. doi: 10.3389/fimmu.2020.01198

 

  1. Abrami M, Biasin A, Tescione F, et al. Mucus structure, viscoelastic properties, and composition in chronic respiratory diseases. Int J Mol Sci. 2024;25(3):1933. doi: 10.3390/ijms25031933

 

  1. Woods CM, Lee VS, Hussey DJ, et al. Lysozyme expression is increased in the sinus mucosa of patients with chronic rhinosinusitis. Rhinology. 2012;50(2):147. doi: 10.4193/Rhino11.229

 

  1. Psaltis AJ, Wormald PJ, Ha KR, Tan LW. Reduced levels of lactoferrin in biofilm‐associated chronic rhinosinusitis. Laryngoscope. 2008;118(5):895-901. doi: 10.1097/MLG.0b013e31816381d4

 

  1. Chung J, Wünnemann F, Salomon J, et al. Increased inflammatory markers detected in nasal lavage correlate with paranasal sinus abnormalities at MRI in adolescent patients with cystic fibrosis. Antioxidants (Basel). 2021;10(9):1412. doi: 10.3390/antiox10091412

 

  1. Possamai LA, Khamri W, Triantafyllou E, Wendon JA, Thursz MR, Antoniades CG. Could Targeting Secretory Leukocyte Protease Inhibitor be An Effective Therapeutic Option to Prevent Infections in Acute Liver Failure? Milton Park: Taylor and Francis; 2014. p. 667-669. doi: 10.2217/imt.14.49

 

  1. Sideras K, Braat H, Kwekkeboom J, et al. Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies. Cancer Treat Rev. 2014;40(4):513-522. doi: 10.1016/j.ctrv.2013.11.005

 

  1. Hirschberg A, Kiss M, Kadocsa E, et al. Different activations of toll-like receptors and antimicrobial peptides in chronic rhinosinusitis with or without nasal polyposis. Eur Arch Otorhino-Laryngol. 2016;273:1779-1788. doi: 10.1007/s00405-015-3816-1

 

  1. Kaliniak S, Fiedoruk K, Spałek J, et al. Remodeling of paranasal sinuses mucosa functions in response to biofilm-induced inflammation. J Inflamm Res. 2024;17:1295-1323. doi: 10.2147/JIR.S443420

 

  1. Gohy S, Hupin C, Ladjemi MZ, Hox V, Pilette C. Key role of the epithelium in chronic upper airways diseases. Clin Exp Allergy. 2020;50(2):135-146. doi: 10.1111/cea.13539

 

  1. Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: Functions and clinical potential. Nat Rev Drug Discov. 2020;19(5):311-332. doi: 10.1038/s41573-019-0058-8

 

  1. Jiménez-Dalmaroni MJ, Gerswhin ME, Adamopoulos IE. The critical role of toll-like receptorsfrom microbial recognition to autoimmunity: A comprehensive review. Autoimmun Rev. 2016;15(1):1-8. doi: 10.1016/j.autrev.2015.08.009
Share
Back to top
Global Translational Medicine, Electronic ISSN: 2811-0021 Print ISSN: 3060-8600, Published by AccScience Publishing