Electrical stimulation: Biological insights and therapeutic applications

Electrical stimulation (ES) has emerged as a versatile modality in biomedical research, primarily due to its ability to modulate cellular activities across the cell membrane. As a barrier to electrical signals, the cell membrane plays a crucial role in healing, tissue regeneration, and cancer treatment. This review highlights the cellular processes involved in ES, focusing on the changes within and across the membrane, including effects on proteins, ions, and signaling pathways. ES regulates membrane potential and ion flow, such as calcium and sodium ions, which are essential for intercellular signaling and cell survival. In addition, ES facilitates electroporation, enhancing membrane permeability to allow controlled drug and gene delivery. It also modulates receptor sensitivity and cellular signaling efficiency by altering the lipid bilayer configuration and protein conformation. The applications of ES are extensive, including its use in wound healing, nerve regeneration, and as an adjunct to cancer treatments. Bioelectric Meridian Therapy, a new approach, employs ES for pain control, tissue repair stimulation, and energy flow regulation. Nevertheless, ES faces limitations such as heterogeneity in cellular responses, challenges in determining optimal stimulus parameters, and concerns regarding long-term safety. To address these issues, there is a need for real-time adaptive systems and personalized ES protocols to achieve safety and efficacy in all therapeutic settings. A deeper understanding of ES–cell membrane interactions can improve the current therapeutic paradigm and enhance the effectiveness of ES- based treatments. Further research is necessary to establish patient-specific ES parameters and integrate them into the precision medicine frameworks, minimizing side effects and improving treatment outcomes.
- Ferrigno B, Bordett R, Duraisamy N, et al. Bioactive polymeric materials and electrical stimulation strategies for musculoskeletal tissue repair and regeneration. Bioact Mater. 2020;5(3):468-485. doi: 10.1016/j.bioactmat.2020.03.010
- Silva JC, Meneses J, Garrido FFF, et al. Direct coupled electrical stimulation towards improved osteogenic differentiation of human mesenchymal stem/stromal cells: A comparative study of different protocols. Sci Rep. 2024;14(1):5458. doi: 10.1038/s41598-024-55234-y
- Katoh K. Effects of electrical stimulation of the cell: Wound healing, cell proliferation, apoptosis, and signal transduction. Med Sci (Basel). 2023;11(1):11. doi: 10.3390/medsci11010011
- Chen C, Bai X, Ding Y, Lee IS. Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomater Res. 2019;23:25. doi: 10.1186/s40824-019-0176-8
- Das R, Langou S, Le TT, Prasad P, Lin F, Nguyen TD. Electrical stimulation for immune modulation in cancer treatments. Front Bioeng Biotechnol. 2022;9:795300. doi: 10.3389/fbioe.2021.795300
- Maffiuletti NA, Gondin J, Place N, Stevens-Lapsley J, Vivodtzev I, Minetto MA. Clinical use of neuromuscular electrical stimulation for neuromuscular rehabilitation: What are we overlooking? Arch Phys Med Rehabil. 2018;99(4):806-812. doi: 10.1016/j.apmr.2017.10.028
- Zhao M, Rolandi M, Isseroff RR. Bioelectric signaling: Role of bioelectricity in directional cell migration in wound healing. Cold Spring Harb Perspect Biol. 2022;14(10):a041236. doi: 10.1101/cshperspect.a041236
- Ramos-Martín F, D’Amelio N. Biomembrane lipids: When physics and chemistry join to shape biological activity. Biochimie. 2022;203:118-138. doi: 10.1016/j.biochi.2022.07.011
- Comerci CJ, Gillman AL, Galera-Laporta L, et al. Localized electrical stimulation triggers cell-type-specific proliferation in biofilms. Cell Syst. 2022;13(6):488-498.e4. doi: 10.1016/j.cels.2022.04.001
- Kulbacka J, Choromańska A, Rossowska J, et al. Cell membrane transport mechanisms: Ion channels and electrical properties of cell membranes. Adv Anat Embryol Cell Biol. 2017;227:39-58. doi: 10.1007/978-3-319-56895-9_3
- Academy of Bioelectric Meridian Massage Australia. Academy of Bioelectric Meridian Massage Australia; 2025. Available from: https://abmma.com.au [Last accessed on 2025 Feb 05].
- Tai G, Tai M, Zhao M. Electrically stimulated cell migration and its contribution to wound healing. Burns Trauma. 2018;6:20. doi: 10.1186/s41038-018-0123-2.
- Gordon T. Electrical stimulation to enhance axon regeneration after peripheral nerve injuries in animal models and humans. Neurotherapeutics. 2016;13(2):295-310. doi: 10.1007/s13311-015-0415-1
- Karamian BA, Siegel N, Nourie B, et al. The role of electrical stimulation for rehabilitation and regeneration after spinal cord injury. J Orthop Traumatol. 2022;23(1):2. doi: 10.1186/s10195-021-00623-6
- Xie S, Huang J, Pereira AT, Xu L, Luo D, Li Z. Emerging trends in materials and devices-based electric stimulation therapy for tumors. BMEMat. 2023;1(3):e12038. doi: 10.1002/bmm2.12038
- Preetam S, Ghosh A, Mishra R, et al. Electrical stimulation: A novel therapeutic strategy to heal biological wounds. RSC Adv. 2024;14(44):32142-32173. doi: 10.1039/d4ra04258a
- Uemura M, Maeshige N, Yamaguchi A, et al. Electrical stimulation facilitates NADPH production in pentose phosphate pathway and exerts an anti-inflammatory effect in macrophages. Sci Rep. 2023;13(1):17819. doi: 10.1038/s41598-023-44886-x
- Gu X, Carroll Turpin MA, Romero-Ortega MI. Biomaterials and regenerative medicine in pain management. Curr Pain Headache Rep. 2022;26(7):533-541. doi: 10.1007/s11916-022-01055-5
- Rems L, Kasimova MA, Testa I, Delemotte L. Pulsed electric fields can create pores in the voltage sensors of voltage-gated ion channels. Biophys J. 2020;119(1):190-205. doi: 10.1016/j.bpj.2020.05.030
- Cooper D, Dimri M. Biochemistry, calcium channels. In: StatPearls. Treasure Island, FL: StatPearls Publishing; 2024.
- Young JL, Dean DA. Electroporation-mediated gene delivery. Adv Genet. 2015;89:49-88. doi: 10.1016/bs.adgen.2014.10.003
- Liu F, Su R, Jiang X, Wang S, Mu W, Chang L. Advanced micro/ nano-electroporation for gene therapy: Recent advances and future outlook. Nanoscale. 2024;16(22):10500-10521. doi: 10.1039/d4nr01408a
- Zakany F, Mándity IM, Varga Z, et al. Effect of the lipid landscape on the efficacy of cell-penetrating peptides. Cells. 2023;12(13):1700. doi: 10.3390/cells12131700
- Sakata S, Okamura Y. Dynamic structural rearrangements and functional regulation of voltage-sensing phosphatase. J Physiol. 2019;597(1):29-40. doi: 10.1113/JP274113
- Shen N, Zhou L, Lai B, Li S. The influence of cochlear implant-based electric stimulation on the electrophysiological characteristics of cultured spiral ganglion neurons. Neural Plast. 2020;2020:3108490. doi: 10.1155/2020/3108490.
- Mallari P, Taulier T, Kamal MA. Recovery from Long COVID: The role of Bioelectric Meridian Therapy in restoring health and well-being. Cureus. 2024;16(12):e76279. doi: 10.7759/cureus.76279
- Zhao S, Mehta AS, Zhao M. Biomedical applications of electrical stimulation. Cell Mol Life Sci. 2020;77(14):2681-2699. doi: 10.1007/s00018-019-03446-1
- Bonferoni MC, Rassu G, Gavini E, et al. Electrochemotherapy of deep-seated tumors: state of art and perspectives as possible “EPR effect enhancer” to improve cancer nanomedicine efficacy. Cancers (Basel). 2021;13(17):4437. doi: 10.3390/cancers13174437
- Cenik F, Schoberwalter D, Keilani M, et al. Neuromuscular electrical stimulation of the thighs in cardiac patients with implantable cardioverter defibrillators. Wien Klin Wochenschr. 2016;128(21-22):802-808. doi: 10.1007/s00508-016-1045-2
- Salman MM, Kitchen P, Yool AJ, Bill RM. Recent breakthroughs and future directions in drugging aquaporins. Trends Pharmacol Sci. 2022;43(1):30-42. doi: 10.1016/j.tips.2021.10.009
- Maiullari S, Cicirelli A, Picerno A, et al. Pulsed electromagnetic fields induce skeletal muscle cell repair by sustaining the expression of proteins involved in the response to cellular damage and oxidative stress. Int J Mol Sci. 2023;24(23):16631. doi: 10.3390/ijms242316631
- Harjunpää H, LlortAsens M, Guenther C, Fagerholm SC. Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front Immunol. 2019;10:1078. doi: 10.3389/fimmu.2019.01078
- Li P, Xu J, Shi Q, et al. Pulse capacitive coupling electric field regulates cell migration, proliferation, polarization, and vascularization to accelerate wound healing. Adv Wound Care (New Rochelle). 2023;12(9):498-512. doi: 10.1089/wound.2021.0194
- Sordini L, Garrudo FFF, Rodrigues CAV, et al. Effect of electrical stimulation conditions on neural stem cells differentiation on cross-linked PEDOT: PSS films. Front Bioeng Biotechnol. 2021;9:591838. doi: 10.3389/fbioe.2021.591838
- Thiagarajan L, Abu-Awwad HAM, Dixon JE. Osteogenic programming of human mesenchymal stem cells with highly efficient intracellular delivery of RUNX2. Stem Cells Transl Med. 2017;6(12):2146-2159. doi: 10.1002/sctm.17-0137
- Cadossi R, Massari L, Racine-Avila J, Aaron RK. Pulsed electromagnetic field stimulation of bone healing and joint preservation: Cellular mechanisms of skeletal response. J Am Acad Orthop Surg Glob Res Rev. 2020;4(5):e1900155. doi: 10.5435/JAAOSGlobal-D-19-00155
- ACNS Guidelines on Electrical Stimulation with Intracranial Electrodes. ACNS Guidelines on Electrical Stimulation With Intracranial Electrodes [Report]; 2024. Available from: https://www.acns.org/userfiles/file/acnsesmtechstandards_draft5.14.24_v1.pdf [Last accessed on 2025 Feb 08].
- Kloth LC. Electrical stimulation technologies for wound healing. Adv Wound Care (New Rochelle). 2014;3(2):81-90. doi: 10.1089/wound.2013.0459
- Wang Q, Zhang Y, Xue H, et al. Lead-free dual-frequency ultrasound implants for wireless, biphasic deep brain stimulation. Nat Commun. 2024;15(1):4017. doi: 10.1038/s41467-024-48250-z
- Yuan Y, Zheng L, Feng Z, Yang G. Different effects of monophasic pulses and biphasic pulses applied by a bipolar stimulation electrode in the rat hippocampal CA1 region. Biomed Eng Online. 2021;20(1):25. doi: 10.1186/s12938-021-00862-y
- Zheng XS, Tan C, Castagnola E, Cui XT. Electrode materials for chronic electrical microstimulation. Adv Healthc Mater. 2021;10(12):e2100119. doi: 10.1002/adhm.202100119
- Cosman ER Jr., Cosman ER Sr. Electric and thermal field effects in tissue around radiofrequency electrodes. Pain Med. 2005;6(6):405-424. doi: 10.1111/j.1526-4637.2005.00076.x
- Teichmann D, Foussier J, Jia J, Leonhardt S, Walter M. Noncontact monitoring of cardiorespiratory activity by electromagnetic coupling. IEEE Trans Biomed Eng. 2013;60(8):2142-2152. doi: 10.1109/TBME.2013.2248732
- Deng Z, Guo L, Chen X, Wu W. Smart wearable systems for health monitoring. Sensors (Basel). 2023;23(5):2479. doi: 10.3390/s23052479
- Zhu L, Luo D, Liu Y. Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. Int J Oral Sci. 2020;12(1):6. doi: 10.1038/s41368-020-0073-y
- Leppik L, Oliveira KMC, Bhavsar MB, Barker JH. Electrical stimulation in bone tissue engineering treatments. Eur J Trauma Emerg Surg. 2020;46(2):231-244. doi: 10.1007/s00068-020-01324-1
- Xu J, Jia Y, Huang W, et al. Non-contact electrical stimulation as an effective means to promote wound healing. Bioelectrochemistry. 2022;146:108108. doi: 10.1016/j.bioelechem.2022.108108
- Rajendran SB, Challen K, Wright KL, Hardy JG. Electrical stimulation to enhance wound healing. J Funct Biomater. 2021;12(2):40. doi: 10.3390/jfb12020040
- Reed SD, Li S. Electroporation advances in large animals. Curr Gene Ther. 2009;9(4):316-326. doi: 10.2174/156652309788921062
- Gehl J. Electroporation: Theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand. 2003;177(4):437-447. doi: 10.1046/j.1365-201X.2003.01093.x
- Janigro D, Perju C, Fazio V, et al. Alternating current electrical stimulation enhanced chemotherapy: A novel strategy to bypass multidrug resistance in tumor cells. BMC Cancer. 2006;6:72. doi: 10.1186/1471-2407-6-72
- Zhong S, Yao S, Zhao Q, et al. Electricity-assisted cancer therapy: From traditional clinic applications to emerging methods integrated with nanotechnologies. Adv NanoBiomed Res. 2023;3(3):2200143. doi: 10.1002/anbr.202200143
- Loh J, Gulati A. The use of transcutaneous electrical nerve stimulation (TENS) in a major cancer center for the treatment of severe cancer-related pain and associated disability. Pain Med. 2015;16(6):1204-1210. doi: 10.1111/pme.12038
- Academy of Bioelectric Meridian Massage Australia (ABMMA). Lymphatic drainage and Bioelectric Meridian Therapy. Academy of Bioelectric Meridian Massage Australia; 2023. Available from: https://abmma.com.au/ is-manual-lymphatic-drainage-mld-with-bioelectric-meridian-therapy-bmt-the-answer [Last accessed on 2025 Feb 08].
- Pluck A. Is manual lymphatic drainage with bio-electric massage therapy a good treatment combination for lymphoedema and lipoedema? A case study. J Lymphoedema. 2023;18(1):67.
- Thrivikraman G, Boda SK, Basu B. Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: A tissue engineering perspective. Biomaterials. 2018;150:60-86. doi: 10.1016/j.biomaterials.2017.10.003
- Ross CL, Siriwardane M, Almeida-Porada G, et al. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation. Stem Cell Res. 2015;15(1):96-108. doi: 10.1016/j.scr.2015.04.009
- Meng S, Rouabhia M, Zhang Z. Electrical stimulation and cellular behaviors in electric field in biomedical research. Materials (Basel). 2021;15(1):165. doi: 10.3390/ma15010165
- Altyar AE, El-Sayed A, Abdeen A, et al. Future regenerative medicine developments and their therapeutic applications. Biomed Pharmacother. 2023;158:114131. doi: 10.1016/j.biopha.2022.114131
- Abtin S, Seyedaghamiri F, Aalidaeijavadi Z, et al. A review on the consequences of molecular and genomic alterations following exposure to electromagnetic fields: Remodeling of neuronal network and cognitive changes. Brain Res Bull. 2024;217:111090. doi: 10.1016/j.brainresbull.2024.111090
- Nussbaum EL, Houghton P, Anthony J, et al. Neuromuscular electrical stimulation for treatment of muscle impairment: Critical review and recommendations for clinical practice. Physiother Can. 2017;69(5):1-76. doi: 10.3138/ptc.2015-88
- Krauss JK, Lipsman N, Aziz T, et al. Technology of deep brain stimulation: Current status and future directions. Nat Rev Neurol. 2021;17(2):75-87. doi: 10.1038/s41582-020-00426-z
- Villarruel Mendoza LA, Scilletta NA, Bellino MG, et al. Recent advances in micro-electro-mechanical devices for controlled drug release applications. Front Bioeng Biotechnol. 2020;8:827. doi: 10.3389/fbioe.2020.00827
- Carè M, Chiappalone M, Cota VR. Personalized strategies of neurostimulation: From static biomarkers to dynamic closed-loop assessment of neural function. Front Neurosci. 2024;18:1363128. doi: 10.3389/fnins.2024.1363128
- Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting strategies for tissue-specific drug delivery. Cell. 2020;181(1):151-167. doi: 10.1016/j.cell.2020.02.001
- Ma R, Liang J, Huang W, et al. Electrical stimulation enhances cardiac differentiation of human induced pluripotent stem cells for myocardial infarction therapy. Antioxid Redox Signal. 2018;28(5):371-384. doi: 10.1089/ars.2016.6766
- Jung B, Yang C, Lee SH. Electroceutical and bioelectric therapy: Its advantages and limitations. Clin Psychopharmacol Neurosci. 2023;21(1):19-31. doi: 10.9758/cpn.2023.21.1.19
- Chen RF, Lin YN, Liu KF, et al. The acceleration of diabetic wound healing by low-intensity extracorporeal shockwave involves in the GSK-3β pathway. Biomedicines. 2020;9(1):21. doi: 10.3390/biomedicines9010021
- Wang C, Sani ES, Gao W. Wearable bioelectronics for chronic wound management. Adv Funct Mater. 2022;32(17):2111022. doi: 10.1002/dfm.202111022