Effect of build distribution and particle properties on the physical characteristics of laser powder bed fusion of in situ alloyed nitinol

The impact of powder flow characteristics on in situ nickel (Ni)-titanium (Ti) alloy formation within the laser powder bed fusion (LPBF) process is poorly understood. In this study, flow segregation patterns of Ni-Ti powder blends within the LPBF build chamber were examined and were found to be influenced by the substrate surface, build layout distribution, and particle size distribution. These segregation patterns significantly impacted relative density (RD) and elasto-caloric properties of in situ alloyed nitinol components, with regions of lower RD correlated with lower Ni content and higher phase transformation enthalpies than regions with higher Ni content. It was found that powder segregation rates between Ti and Ni particles were higher for rougher substrates, which also contained higher amounts of unmelted powder than smoother substrates. Furthermore, the position of the unmelted powder relative to the deposition arm sweep impacted powder segregation patterns throughout the build chamber. Powder segregation patterns in the LPBF deposition bed were also affected by differences in material density between Ni and Ti and interparticle cohesive forces. The insights gained from this work provide a route to achieving improved microstructural and chemical homogeneity of in situ alloyed nitinol, with tailored thermo-mechanical performance.

- Khoo ZX, Liu Y, An J, Chua CK, Shen YF, Kuo CN. A review of selective laser melted NiTi shape memory alloy. Materials. 2018;11(4):519. doi: 10.3390/ma11040519
- Sharma N, Jangra KK, Raj T. Fabrication of NiTi alloy: A review. Proc Inst Mech Eng Part J Mater Des Appl. 2018;232(3):250-269. doi: 10.1177/1464420715622494
- Farber E, Zhu JN, Popovich A, Popovich V. A review of NiTi shape memory alloy as a smart material produced by additive manufacturing. Mater Today Proc. 2020;30:761-767. doi: 10.1016/j.matpr.2020.01.563
- Zhan J, Wu J, Ma R, Li K, Lin J, Murr LE. Tuning the functional properties by laser powder bed fusion with partitioned repetitive laser scanning: Toward editable 4D printing of NiTi alloys. J Manuf Process. 2023;101:1468-1481. doi: 10.1016/j.jmapro.2023.07.009
- Duda T, Raghavan LV. 3D metal printing technology. IFAC Pap. 2016;49(29):103-110. doi: 10.1016/j.ifacol.2016.11.111
- Bormann T, Müller B, Schinhammer M, Kessler A, Thalmann P, De Wild M. Microstructure of selective laser melted nickel-titanium. Mater Charact. 2014;94:189-202. doi: 10.1016/j.matchar.2014.05.017
- Chekotu JC, Groarke R, O’Toole K, Brabazon D. Advances in selective laser melting of nitinol shape memory alloy part production. Materials (Basel). 2019;12(5):809. doi: 10.3390/ma12050809
- Alagha AN, Hussain S, Zaki W. Additive manufacturing of shape memory alloys: A review with emphasis on powder bed systems. Mater Des. 2021;204:109654. doi: 10.1016/j.matdes.2021.109654
- Elahinia M, Shayesteh Moghaddam N, Taheri Andani M, Amerinatanzi A, Bimber BA, Hamilton RF. Fabrication of NiTi through additive manufacturing: A review. Prog Mater Sci. 2016;83:630-663. doi: 10.1016/j.pmatsci.2016.08.001
- Bourke D, Selvam KT, Obeidi MA, Ul Ahad I, Brabazon D. Effect of powder and process parameters on in-situ alloying of nitinol during laser powder bed fusion. J Mater Res Technol. 2024;30:7988-7997. doi: 10.1016/j.jmrt.2024.05.178
- Wang S, Shi Y, Fan K, Wang Q, Li Y, Teng X. Microstructure and elastocaloric effect of NiTi shape memory alloy in-situ synthesized by laser directed energy deposition additive manufacturing. Mater Charact. 2024;210:113831. doi: 10.1016/j.matchar.2024.113831
- Ewald S, Kies F, Hermsen S, Voshage M, Haase C, Schleifenbaum JH. Rapid alloy development of extremely high-alloyed metals using powder blends in laser powder bed fusion. Materials(Basel). 2019;12(10):1706. doi: 10.3390/ma12101706
- Wang C, Tan XP, Du Z, et al. Additive manufacturing of NiTi shape memory alloys using pre-mixed powders. J Mater Process Technol. 2019;271:152-161. doi: 10.1016/j.jmatprotec.2019.03.025.
- Zhang B, Chen J, Coddet C. Microstructure and transformation behavior of in-situ shape memory alloys by selective laser melting Ti-Ni mixed powder. J Mater Sci Technol. 2013;29(9):863-867. doi: 10.1016/j.jmst.2013.05.006
- Stoll P, Spierings A, Wegener K. SLM processing of elementally blended NiTi shape memory alloy. Procedia CIRP. 2020;95:121-126. doi: 10.1016/j.procir.2020.02.250
- Mosallanejad MH, Niroumand B, Aversa A, Saboori A. In-situ alloying in laser-based additive manufacturing processes: A critical review. J Alloys Compd. 2021;872:159567. doi: 10.1016/j.jallcom.2021.159567
- Li H, Brodie EG, Hutchinson C. Predicting the chemical homogeneity in laser powder bed fusion (LPBF) of mixed powders after remelting. Addit Manuf. 2023;65:103447. doi: 10.1016/j.addma.2023.103447
- Shoji Aota L, Bajaj P, Zschommler Sandim HR, Aimé Jägle E. Laser powder-bed fusion as an alloy development tool: Parameter selection for in-situ alloying using elemental powders. Materials. 2020;13(18):3922. doi: 10.3390/ma13183922
- Knieps MS, Reynolds WJ, Dejaune J, Clare AT, Evirgen A. In-situ alloying in powder bed fusion: The role of powder morphology. Mater Sci Eng A. 2021;807:140849. doi: 10.1016/j.msea.2021.140849
- Mussatto A, Groarke R, O’Neill A, Obeidi MA, Delaure Y, Brabazon D. Influences of powder morphology and spreading parameters on the powder bed topography uniformity in powder bed fusion metal additive manufacturing. Addit Manuf. 2021;38:101807. doi: 10.1016/j.addma.2020.101807
- Zhao C, Fezzaa K, Cunningham RW, et al. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Sci Rep. 2017;7:3602. doi: 10.1038/s41598-017-03761-2
- Thiedemann U, Rösner-Kuhn M, Drewes K, Kuppermann G, Frohberg MG. Temperature dependence of the mixing enthalpy of liquid Ti-Ni and Fe-Ti-Ni alloys. J Non Cryst Solids. 1999;250-253:329-335. doi: 10.1016/S0022-3093(99)00258-6
- Chen Y, Zhang X, Parvez MM, Liou F. A review on metallic alloys fabrication using elemental powder blends by laser powder directed energy deposition process. Materials (Basel). 2020;13(16):3562. doi: 10.3390/ma13163562
- Chmielewska A, Wysocki B, Buhagiar JP, et al. In situ alloying of NiTi: Influence of laser powder bed fusion (LBPF) scanning strategy on chemical composition. Mater Today Commun. 2022;30:103007. doi: 10.1016/j.mtcomm.2021.103007
- Yadroitsev I. Selective Laser Melting: Direct Manufacturing of 3D-Objects by Selective Laser Melting of Metal Powders. Germany: LAP Lambert Academic Publishing; 2009.
- Aboulkhair NT, Everitt NM, Ashcroft I, Tuck C. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit Manuf. 2014;1-4:77-86. doi: 10.1016/j.addma.2014.08.001
- Zhao C, Liang H, Luo S, Yang J, Wang Z. The effect of energy input on reaction, phase transition and shape memory effect of NiTi alloy by selective laser melting. J Alloys Compd. 2020;817:153288. doi: 10.1016/j.jallcom.2019.153288
- Chmielewska A, Wysocki BA, Gadalińska E, et al. Laser powder bed fusion (LPBF) of NiTi alloy using elemental powders: The influence of remelting on printability and microstructure. Rapid Prototy J. 2022;28:1845-1868. doi: 10.1108/RPJ-08-2021-0216
- Nan W, Pasha M, Bonakdar T, et al. Jamming during particle spreading in additive manufacturing. Powder Technol. 2018;338:253-262. doi: 10.1016/j.powtec.2018.07.030
- Ahmed M, Pasha M, Nan W, Ghadiri M. A simple method for assessing powder spreadability for additive manufacturing. Powder Technol. 2020;367:671-679. doi: 10.1016/j.powtec.2020.04.033
- Xu R, Nan W. Analysis of the metrics and mechanism of powder spreadability in powder-based additive manufacturing. Addit Manuf. 2023;71:103596. doi: 10.1016/j.addma.2023.103596
- He Y, Hassanpour A, Bayly AE. Combined effect of particle size and surface cohesiveness on powder spreadability for additive manufacturing. Powder Technol. 2021;392:191-203. doi: 10.1016/j.powtec.2021.06.046
- Giraud M, Gatumel C, Vaudez S, et al. Investigation of a granular Bond number based rheological model for polydispersed particulate systems. Chem Eng Sci. 2020;228:115971. doi: 10.1016/j.ces.2020.115971
- Frenzel J, George EP, Dlouhý A, Somsen C, Wagner WF, Eggeler G. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater. 2010;58(9):3444-3458. doi: 10.1016/j.actamat.2010.02.019
- Groarke R, Vijayaraghavan RK, Powell D, Rennie A, Brabazon D. Powder characterization-methods, standards, and state of the art. In: Yadroitsev I, Yadroitsava I, Du Plessis A, MacDonald E, editors. Fundamentals of Laser Powder Bed Fusion of Metals. In Additive Manufacturing Materials and Technologies. Netherlands: Elsevier; 2021. p. 491-527. doi: 10.1016/B978-0-12-824090-8.00006-8
- Tondare VN, Whiting JG, Pintar AL, Moylan S, Neveu A, Francqui F. An interlaboratory study for assessing repeatability and reproducibility of the data generated by rotating drum powder rheometers (part 1: Granudrum). Powder Technol. 2024;441:119810. doi: 10.1016/j.powtec.2024.119810
- Neveu A, Francqui F, Lumay G. Measuring powder flow properties in a rotating drum. Measurement. 2022;200:111548. doi: 10.1016/j.measurement.2022.111548
- ISO. ISO/ASTM TR 52952:2023. ISO. Available from: https://www.iso.org/standard/83717.html [Last accessed on 2025 Apr 03].
- Crystallography Open Database. Available from: https:// www.crystallography.net/cod/index.php [Last accessed on 2024 Feb 06].
- Rodriguez-Carvajal J. Introduction to the program FULLPROF: Refinement of crystal and magnetic structures from powder and single crystal data, Laboratoire Léon Brillouin (CEA-CNRS). France: CEA/Saclay; 2001. [Online]. Available: https://www.researchgate.net/ publication/267375610
- Match! - Phase Analysis using Powder Diffraction. Available from: https://www.crystalimpact.de/match [Last accessed on 2024 Nov 04].
- Wang J, Zhu R, Liu Y, Zhang L. Understanding melt pool characteristics in laser powder bed fusion: An overview of single- and multi-track melt pools for process optimization. Adv Powder Mater. 2023;2(4):100137. doi: 10.1016/j.apmate.2023.100137
- Capozzi LC, Sivo A, Bassini E. Powder spreading and spreadability in the additive manufacturing of metallic materials: A critical review. J Mater Process Technol. 2022;308:117706. doi: 10.1016/j.jmatprotec.2022.117706
- ASM Material Data Sheet. Available from: https://asm.matweb. com/search/specificmaterial.asp?bassnum=ntime35a [Last accessed on 2025 Apr 11].
- Nickel, Cobalt, and their Alloys (asm Specialty Handbook) [PDF] [12ncqllkk93o]. Available from: https://vdoc.pub/documents/nickel/cobalt/and/their/alloys/asm/specialty/handbook /12ncqllkk93o [Last accessed on 2025 Apr 11].
- Yadroitsev I, Krakhmalev P, Yadroitsava I. Titanium alloys manufactured by in situ alloying during laser powder bed fusion. JOM. 2017;69(12):2725-2730. doi: 10.1007/s11837-017-2600-7
- Spierings A, Levy G. Comparison of Density of Stainless Steel 316 L Parts Produced with Selective Laser Melting using Different Powder Grades; 2009. Available from: https://www.semanticscholar.org/paper/comparison/of/density/of/stainless/steel/316/l/with/spierings/levy/e5a132bae55615a773d2468c4692c28865abf313 [Last accessed on 2025 Feb 26].
- Snow Z, Martukanitz R, Joshi S. On the development of powder spreadability metrics and feedstock requirements for powder bed fusion additive manufacturing. Addit Manuf. 2019;28:78-86. doi: 10.1016/j.addma.2019.04.017
- Ortín J, Planes A. Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations. Acta Metall. 1988;36(8):1873-1889. doi: 10.1016/0001-6160(88)90291-X
- Humbeeck JV, Stalmans R, Chandrasekaran M, Delaey L. On the Stability of Shape Memory Alloys. Netherlands: Elsevier; 1990. p. 96-105. doi: 10.1016/B978-0-7506-1009-4.50012-3
- Khalil-Allafi J, Amin-Ahmadi B. The effect of chemical composition on enthalpy and entropy changes of martensitic transformations in binary NiTi shape memory alloys. J Alloys Compd. 2009;487(1):363-366. doi: 10.1016/j.jallcom.2009.07.135
- Sam J, Franco B, Ma J, Karaman I, Elwany A, Mabe JH. Tensile actuation response of additively manufactured nickel-titanium shape memory alloys. Scr Mater. 2018;146:164-168. doi: 10.1016/j.scriptamat.2017.11.013
- Zhang Q, Hao S, Liu Y, et al. The microstructure of a selective laser melting (SLM)-fabricated NiTi shape memory alloy with superior tensile property and shape memory recoverability. Appl Mater Today. 2020;19:100547. doi: 10.1016/j.apmt.2019.100547
- Wang X, Yu J, Liu J, et al. Effect of process parameters on the phase transformation behavior and tensile properties of NiTi shape memory alloys fabricated by selective laser melting. Addit Manuf. 2020;36:101545. doi: 10.1016/j.addma.2020.101545
- Kordizadeh F, Mohajerani S, Safaei K, et al. Investigating the elastocaloric effect of the NiTi fabricated by laser powder bed fusion: Effect of the building orientation. Materialia. 2023;30:101817. doi: 10.1016/j.mtla.2023.101817
- Khanlari K, Shi Q, Li K, Hu K, Cao P, Liu X. Effects of printing volumetric energy densities and post-processing treatments on the microstructural properties, phase transformation temperatures and hardness of near-equiatomic NiTinol parts fabricated by a laser powder bed fusion technique. Intermetallics. 2021;131:107088. doi: 10.1016/j.intermet.2021.107088
- Collins C, Brice DA, Samimi P, Ghamarian I, Fraser HL. Microstructural control of additively manufactured metallic materials. Annu Rev Mater Res. 2016;46:63-91. doi: 10.1146/annurev-matsci-070115-031816