AccScience Publishing / ESAM / Online First / DOI: 10.36922/ESAM025160008
REVIEW ARTICLE

Recent progress in electromagnetic microwave absorption of additively manufactured carbon fiber-reinforced polymer structures

Quanjin Ma1 Ke Dong1 Feirui Li1 Yanjie Wu2 Jing Tian2 Ming Yu3 Yi Xiong1*
Show Less
1 School of Automation and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, Guangdong, China
2 School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
3 Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
ESAM 2025, 1(2), 025160008 https://doi.org/10.36922/ESAM025160008
Received: 15 April 2025 | Revised: 3 June 2025 | Accepted: 4 June 2025 | Published online: 16 June 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Recent advances in additive manufacturing have significantly expanded the design and fabrication capabilities of carbon fiber-reinforced polymer (CFRP) structures, particularly in the context of electromagnetic microwave absorption (EMWA). This review provides a comprehensive overview of the current state of research on EMWA properties of additively manufactured CFRP structures, focusing on EMWA mechanisms, polymer material, and additively manufactured microwave absorbers. Key topics include the EMWA mechanisms inherent to various fiber-reinforced materials and the role of additive manufacturing processes in tailoring EMWA performance. Moreover, the review paper summarizes the electromagnetic characteristics of various fiber-reinforced materials and evaluates the microwave absorption performance of additively manufactured absorbers, highlighting the trade-offs between electromagnetic and load-bearing performance. Furthermore, challenges and future perspectives are discussed to provide new insights into enhancing EMWA and balancing EMWA with load-bearing capabilities. It explores new possibilities for next-generation advanced additively manufactured CFRP microwave absorbers that maintain excellent load-bearing properties.

Keywords
Electromagnetic microwave absorption
Microwave absorption mechanism
Microwave absorber
Additive manufacturing
Microwave absorbing materials
Load-bearing performance
Funding
This work was supported by the Guangdong Innovative and Entrepreneurial Research Team Program (No. 2021ZT09X256), High Level of Special Funds (No. G03034K003), and Shenzhen Science and Technology Program (No. JCYJ20240813100904006).
Conflict of interest
Yi Xiong is an Editorial Board Member of this journal but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Lv H, Cui J, Li B, Yuan M, Liu J, Che R. Insights into civilian electromagnetic absorption materials: Challenges and innovative solutions. Adv Funct Mater. 2024;35:2315722. doi: 10.1002/adfm.202315722

 

  1. Wang W, Li Z, Su R, Huang Y, Li Y, He R. Advanced 3D printing accelerates electromagnetic wave absorption from ceramic materials to structures. NPJ Adv. Manuf. 2025;2(1):2. doi: 10.1038/s44334-024-00013-w

 

  1. Wang YF, Zhu L, Han L, Zhou XH, Gao Y, Lv LH. Recent progress of one-dimensional nanomaterials for microwave absorption: A review. ACS Appl Nano Mater. 2023;6(9):7107-7122. doi: 10.1021/acsanm.3c00818

 

  1. Jie H, Zhao Z, Zeng Y, et al. A review of intentional electromagnetic interference in power electronics: Conducted and radiated susceptibility. IET Power Electron. 2024;17(12):1487-1506. doi: 10.1049/pel2.12685

 

  1. Lin J, Huang J, Guo Z, et al. Hydrophobic multilayered PEG@ PAN/MXene/PVDF@ SiO2 composite film with excellent thermal management and electromagnetic interference shielding for electronic devices. Small. 2024;20(46):2402938. doi: 10.1002/smll.202402938

 

  1. Albert AA, Parthasarathy V, Kumar PS. Review on recent progress in epoxy‐based composite materials for electromagnetic interference (EMI) shielding applications. Polym Compos. 2024;45(3):1956-1984. doi: 10.1002/pc.27928

 

  1. Ma Q, Dong K, Li F, Yu M, Xiong Y. Inverse design of material, structure, and process for dielectric properties of additively manufactured PLA/BaTiO3 polymer composites. Compos Commun. 2025;55:102314. doi: 10.1016/j.coco.2025.102314

 

  1. Shi S, Jiang Y, Ren H, et al. 3D-printed carbon-based conformal electromagnetic interference shielding module for integrated electronics. Nanomicro Lett. 2024;16(1):85. doi: 10.1007/s40820-023-01317-w

 

  1. Xia Y, Gao W, Gao C. A review on graphene‐based electromagnetic functional materials: Electromagnetic wave shielding and absorption. Adv Funct Mater. 2022;32(42):2204591. doi: 10.1002/adfm.202204591

 

  1. Gong D, Chen T, Cui S, Zhang D, Cai J. Recent advances and future prospects for construction strategies of flexible electromagnetic protection patches. Adv Mater Technol. 2025;10(5):2401497. doi: 10.1002/admt.202401497

 

  1. Cao WQ, Zhang M, Cao MS. A perspective of tailoring dielectric genes for 2D materials toward advanced electromagnetic functions. Adv Funct Mater. 2024;34(52):2410928. doi: 10.1002/adfm.202410928

 

  1. Ning Y, Zeng X, Huang J, Shen ZY, Gao Y, Che R. Multifunctional electromagnetic responsive porous materials synthesized by freeze casting: Principles, progress, and prospects. Adv Funct Mater. 2025;35(6):2414838. doi: 10.1002/adfm.202414838

 

  1. Lan D, Hu Y, Wang M, Wang Y, Gao Z, Jia Z. Perspective of electromagnetic wave absorbing materials with continuously tunable effective absorption frequency bands. Compos Commun. 2024;50:101993. doi: 10.1016/j.coco.2024.101993

 

  1. Zhang X, Zhao Z, Xu J, et al. N-doped carbon nanotube arrays on reduced graphene oxide as multifunctional materials for energy devices and absorption of electromagnetic wave. Carbon. 2021;177:216-225. doi: 10.1016/j.carbon.2021.02.085

 

  1. Cheng Z, Cao Y, Wang R, et al. Hierarchical surface engineering of carbon fiber for enhanced composites interfacial properties and microwave absorption performance. Carbon. 2021;185:669-680. doi: 10.1016/j.carbon.2021.09.053

 

  1. Shi Y, Ding X, Pan K, Gao Z, Du J, Qiu J. A novel multi-dimensional structure of graphene-decorated composite foam for excellent stealth performance in microwave and infrared frequency bands. J Mater Chem A. 2022;10(14):7705-7717. doi: 10.1039/D2TA00030J

 

  1. Gao Q, Ye X, He E, et al. 3D printed fabrication of ultra‐structured composites of carbonyl iron powder@ carbon@ carbon black/polylactic acid for efficient microwave absorption. Polym Compos. 2024;45(15):13829-13843. doi: 10.1002/pc.28738

 

  1. Cai Y, Yu H, Cheng L, et al. Structure design, surface modification, and application of CNT microwave‐absorbing composites. Adv Sustain Syst. 2023;7(12):2300272. doi: 10.1002/adsu.202300272

 

  1. Zhao R, Liang B, Shi Y, et al. Recent progress of carbon-based magnetic fibers for electromagnetic wave absorption. Carbon. 2024;229:119513. doi: 10.1016/j.carbon.2024.119513

 

  1. Ma Y, Liu R, Sun L, Wei S, Li X. Progress on microwave absorption performance of carbon fiber reinforced composites. ChemistrySelect. 2024;9(21):e202305226. doi: 10.1002/slct.202305226

 

  1. Tang W, Dong S, Cui T, et al. Lightweight zirconium modified carbon-carbon composites with excellent microwave absorption and mechanical properties. Compos A Appl Sci Manuf. 2024;180:108102. doi: 10.1016/j.compositesa.2024.108102

 

  1. Lei H, Shan M, Zhang Y, Zhao P, Yu C, Huang Y. Design-manufacturing-evaluation integration of microwave absorbing metastructures based on additive manufacturing. Compos Sci Technol. 2023;243:110270. doi: 10.1016/j.compscitech.2023.110270

 

  1. Ma Q, Dong K, Li F, et al. Additive manufacturing of polymer composite millimeter‐wave components: Recent progress, novel applications, and challenges. Polym Compos. 2025;46(1):14-37. doi: 10.1002/pc.28985

 

  1. Gao B, Yan Y, Liu Y, et al. A design project of multifunctional broadband electromagnetic-wave-absorbing carbon fiber fabric composite by regulating periodic structure. J Chem Eng. 2025;508:161031. doi: 10.1016/j.cej.2025.161031

 

  1. Zhang F, Li N, Shi JF, et al. Recent progress on carbon-based microwave absorption materials for multifunctional applications: A review. Compos B Eng. 2024;283:111646. doi: 10.1016/j.compositesb.2024.111646

 

  1. Peng J, Wang S, Liang B, et al. Review of micro and nano scale 3D printing of electromagnetic metamaterial absorbers: Mechanism, fabrication, and functionality. Virtual Phys Prototyp. 2024;19(1):e2378937. doi: 10.1080/17452759.2024.2378937

 

  1. Zhang J, Li D, Wang M. Multi-material fused deposition modelling of structural–functional integrated absorber with multi-scale structure possessing tunable broadband microwave absorption. Mater Des. 2024;246:113315. doi: 10.1016/j.matdes.2024.113315

 

  1. Goh GD, Sing SL, Yeong WY. A review on machine learning in 3D printing: Applications, potential, and challenges. Artif Intell Rev. 2021;54(1):63-94. doi: 10.1007/s10462-020-09876-9

 

  1. Živković M, Žujović M, Milošević J. Architectural 3d-printed structures created using artificial intelligence: A review of techniques and applications. Appl Sci. 2023;13(19):10671. doi: 10.3390/app131910671

 

  1. Zhu Z, Ng DWH, Park HS, McAlpine MC. 3D-printed multifunctional materials enabled by artificial-intelligence-assisted fabrication technologies. Nat Rev Mater. 2021;6(1):27-47. doi: 10.1038/s41578-020-00235-2

 

  1. Wang J, Zhou L, Fan C. A machine learning-based method for co-design and optimization of microwave-absorbing/ load-bearing multifunctional structures. Smart Mater Struct. 2024;33(4):045023. doi: 10.1088/1361-665X/ad31cf

 

  1. Zhang Y, Shan M, Lei H, Zhao P, Yu C, Huang Y. Evolutionary algorithm-based integrated design of material-structural microwave absorption using material extrusion. Compos A Appl Sci Manuf. 2024;177:107891. doi: 10.1016/j.compositesa.2023.107891

 

  1. Du Y, Liu Y, Wang A, Kong J. Research progress and future perspectives on electromagnetic wave absorption of fibrous materials. iScience. 2023;26(10):107873. doi: 10.1016/j.isci.2023.107873

 

  1. Sista KS, Dwarapudi S, Kumar D, Sinha GR, Moon AP. Carbonyl iron powders as absorption material for microwave interference shielding: A review. J Alloys Compd. 2021;853:157251. doi: 10.1016/j.jallcom.2020.157251

 

  1. Cheng J, Zhang H, Xiong Y, et al. Construction of multiple interfaces and dielectric/magnetic heterostructures in electromagnetic wave absorbers with enhanced absorption performance: A review. J Materiomics. 2021;7(6):1233-1263. doi: 10.1016/j.jmat.2021.02.017

 

  1. Qin M, Zhang L, Wu H. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv Sci (Weinh). 2022;9(10):2105553. doi: 10.1002/advs.202105553

 

  1. Zhang S, Lan D, Zheng J, Zhao Z, Jia Z, Wu G. Insights into polarization relaxation of electromagnetic wave absorption. Cell Rep Phys Sci. 2024;5(9):102206. doi: 10.1016/j.xcrp.2024.102206

 

  1. Elhassan A, Lv X, Abdalla I, Yu J, Li Z, Ding B. Efficient synthesis of Fe3O4/PPy double-carbonized core-shell-like composites for broadband electromagnetic wave absorption. Polymers. 2024;16(8):1160. doi: 10.3390/polym16081160

 

  1. Portes RC, Lopes BH, Rezende MC, Amaral-Labat G, Baldan MR. Enhancing metacomposite properties and electromagnetic interference shielding: Exploring the interplay between manufacturing processability of carbon fiber elastomeric composite and permittivity/permeability effects. Adv Compos Hybrid Mater. 2024;7(6):208. doi: 10.1007/s42114-024-01036-9

 

  1. Tang W, Sun J, Wang Y, et al. Electromagnetic absorption properties of 3D printed fiber-oriented composites under different paths. Constr Build Mater. 2024;416:135140. doi: 10.1016/j.conbuildmat.2024.135140

 

  1. Peng H, Zhang D, Xie Z, Lu S, Liu Y, Liang F. Recent advances in structural design of carbon/magnetic composites and their electromagnetic wave absorption applications. Small. 2025;21:2408570. doi: 10.1002/smll.202408570

 

  1. Cui L, Han X, Wang F, Zhao H, Du Y. A review on recent advances in carbon-based dielectric system for microwave absorption. J Mater Sci. 2021;56:10782-10811. doi: 10.1007/s10853-021-05941-y

 

  1. Liu JT, Zheng YC, Hou X, Feng XR, Jiang K, Wang M. Structured carbon for electromagnetic shielding and microwave absorption from carbonization of waste polymer: A review. Chem Eng J. 2024;496:154013. doi: 10.1016/j.cej.2024.154013

 

  1. Yim YJ, Lee JJ, Tugirumubano A, Go SH, Kim HG, Kwac LK. Electromagnetic interference shielding behavior of magnetic carbon fibers prepared by electroless FeCoNi-plating. Materials (Basel). 2021;14(14):3774. doi: 10.3390/ma14143774

 

  1. Quan B, Liang X, Ji G, Zhang Y, Xu G, Du Y. Cross-linking-derived synthesis of porous Cox Niy/C nanocomposites for excellent electromagnetic behaviors. ACS Appl Mater Interfaces. 2017;9(44):38814-38823. doi: 10.1021/acsami.7b13411

 

  1. Wu T, Huan X, Jia X, et al. 3D printing nanocomposites with enhanced mechanical property and excellent electromagnetic wave absorption capability via the introduction of ZIF-derivative modified carbon fibers. Compos B Eng. 2022;233:109658. doi: 10.1016/j.compositesb.2022.109658

 

  1. Tan H, Wang Y, Wang C, et al. Carbon nanotubes/carbon nanofibers@ carbon fiber construction of 3D network hierarchical structures toward multiple synergistic losses for electromagnetic wave absorption. Vacuum. 2024;219:112722. doi: 10.1016/j.vacuum.2023.112722

 

  1. Abdalla I, Shen J, Yu J, Li Z, Ding B. Co3O4/carbon composite nanofibrous membrane enabled high-efficiency electromagnetic wave absorption. Sci Rep. 2018;8(1):12402. doi: 10.1038/s41598-018-30871-2

 

  1. Yuan S, Wang T, Feng T, Kong J. Electromagnetic wave absorption of fabricated Fe/Fe3O4/C hollow fibers derived from ceiba fiber templates. Mater Sci Eng B. 2024;299:117057. doi: 10.1016/j.mseb.2023.117057

 

  1. Zhang L, Jiang Y, Wang L, Zhang C, Liu S. Hierarchical porous carbon nanofibers as binder-free electrode for high-performance supercapacitor. Electrochim Acta. 2016;196:189-196. doi: 10.1016/j.electacta.2016.02.050

 

  1. Bae J, Hong JY. Fabrication of nitrogen-doped porous carbon nanofibers for heavy metal ions removal. Carbon Lett. 2021;31(6):1339-1347. doi: 10.1007/s42823-021-00291-w

 

  1. Wu H, Qu S, Lin K, et al. Enhanced low-frequency microwave absorbing property of SCFs@ TiO2 composite. Powder Technol. 2018;333:153-159. doi: 10.1016/j.powtec.2018.04.015

 

  1. Lv X, Yang S, Jin J, Zhang L, Li G, Jiang J. Preparation and electromagnetic properties of carbon nanofiber/epoxy composites. J Macromol Sci Part B. 2010;49(2):355-365. doi: 10.1080/00222340903355750

 

  1. Huang S, Zhou W, Luo F, Wei P, Zhu D. Mechanical and dielectric properties of short carbon fiber reinforced Al2O3 composites with MgO additive. Ceram Int. 2014;40(2):2785-2791. doi: 10.1016/j.ceramint.2013.10.038

 

  1. Logesh G, Srishilan C, Sabu U, et al. Carbon fiber reinforced composites from industrial waste for microwave absorption and electromagnetic interference shielding applications. Ceram Int. 2023;49(2):1922-1931. doi: 10.1016/j.ceramint.2022.09.157

 

  1. Dong H, Gao S, Yu C, et al. Design and performance of 3D-Printed ABS@ rGO/CF/CeO2 composites for microwave absorption and mechanical strength. Chem Eng J. 2024;499:156696. doi: 10.1016/j.cej.2024.156696

 

  1. Wang J, Cheng B, Qiu H, Qi S. Enhanced microwave absorption properties of manganese dioxide/carbon fiber hybrid with polyaniline in the X band. J Electron Mater. 2018;47:5564-5571. doi: 10.1007/s11664-018-6455-7

 

  1. Cheng B, Wang J, Zhang F, Qi S. Preparation of silver/carbon fiber/polyaniline microwave absorption composite and its application in epoxy resin. Polym Bull. 2018;75:381-393. doi: 10.1007/s00289-017-2035-x

 

  1. Xia Q, Chen L, Wang X, et al. The microwave absorption performance of CF coated with MnO2 nanowires grown by simple hydrothermal method. Ceram Int. 2024;50(24):55931-55939. doi: 10.1016/j.ceramint.2024.11.003

 

  1. Jun Z, Peng T, Sen W, Jincheng X. Preparation and study on radar-absorbing materials of cupric oxide-nanowire-covered carbon fibers. Appl Surf Sci. 2009;255(9):4916-4920. doi: 10.1016/j.apsusc.2008.12.036

 

  1. Huang B, Yue J, Wei Y, Huang X, Tang X, Du Z. Enhanced microwave absorption properties of carbon nanofibers functionalized by FeCo coatings. Appl Surf Sci. 2019;483:98-105. doi: 10.1016/j.apsusc.2019.03.301

 

  1. Zhang X, Qi S, Zhao Y, Wang L, Fu J, Yu M. Synthesis and microwave absorption properties of Fe@carbon fibers. RSC Adv. 2020;10(54):32561-32568. doi: 10.1039/D0RA03547E

 

  1. Yuan L, Zhao W, Miao Y, et al. Constructing core-shell carbon fiber/polypyrrole/CoFe2O4 nanocomposite with optimized conductive loss and polarization loss toward efficient electromagnetic absorption. Adv Compos Hybrid Mater. 2024;7(2):70. doi: 10.1007/s42114-024-00864-z

 

  1. Yu S, Wang C, Chen Z, et al. Additive manufacturing of broadband electromagnetic wave absorbing materials: Polymer-derived SiC/Si3N4 composites with triply periodic minimal surface meta-structure. Chem Eng J. 2024;483:149185. doi: 10.1016/j.cej.2024.149185

 

  1. Huang Y, Wu D, Zhang K, et al. Topological designs of mechanical-electromagnetic integrated laminate metastructure for broadband microwave absorption based on bi-directional evolutionary optimization. Compos Sci Technol. 2021;213:108898. doi: 10.1016/j.compscitech.2021.108898

 

  1. Duan Y, Liang Q, Yang Z, et al. A wide-angle broadband electromagnetic absorbing metastructure using 3D printing technology. Mater Des. 2021;208:109900. doi: 10.1016/j.matdes.2021.109900

 

  1. Wang G, Li D, Liu T, Zhang C, Xie YM, Liao W. Design and manufacturing of lightweight modular broadband microwave absorbing metastructure. Compos B Eng. 2023;266:111007. doi: 10.1016/j.compositesb.2023.111007

 

  1. Liang L, Yan L, Cao M, et al. Microwave absorption and compression performance design of continuous carbon fiber reinforced 3D printing pyramidal array sandwich structure. Compos Commun. 2023;44:101773. doi: 10.1016/j.coco.2023.101773

 

  1. Duan Y, Liang Q, Yang Z, et al. Bamboo-inspired composite metastructure for broadband microwave absorption and load bearing. Mater Res Bull. 2023;166:112368. doi: 10.1016/j.materresbull.2023.112368

 

  1. Deng K, Wu H, Song B, et al. 3D-printed conical structure absorber based on NFG/Fe3Si/SiCnw ternary composites for multifunctional integrated electromagnetic microwave absorption. Compos B Eng. 2024;274:111243. doi: 10.1016/j.compositesb.2024.111243

 

  1. Duan Y, Liang Q, Yang Z, Wang X, Liu P, Li D. Ultrabroadband metastructure absorber with angular stability for conformal applications. Mater Today Phys. 2023;39:101278. doi: 10.1016/j.mtphys.2023.101278

 

  1. Zhang T, Li D, Yang Z, et al. A multi-materials 3D-printed continuous conductive fibre-based metamaterial for broadband microwave absorption. Virtual Phys Prototyp. 2024;19(1):e2285417. doi: 10.1080/17452759.2023.2285417

 

  1. Yin X, Long C, Li J, et al. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays. Sci Rep. 2015;5(1):15367. doi: 10.1038/srep15367

 

  1. Lim DD, Ibarra A, Lee J, Jung J, Choi W, Gu GX. A tunable metamaterial microwave absorber inspired by chameleon’s color-changing mechanism. Sci Adv. 2025;11(3):eads3499. doi: 10.1126/sciadv.ads3499

 

  1. Li D, Pan W, Wang T, Wang X, Gong R. 3D printed lightweight metastructure with microwave absorption and mechanical resistance. Mater Des. 2023;225:111506. doi: 10.1016/j.matdes.2022.111506

 

  1. Zhang S, An Q, Li D, et al. Multifunctional meta-absorber based on CB-PLA composite and magnetic materials for electromagnetic absorption and load-bearing capacity. Compos Sci Technol. 2025;264:111131. doi: 10.1016/j.compscitech.2025.111131

 

  1. Tan R, Zhou F, Liu Y, et al. 3D printed propeller-like metamaterial for wide-angle and broadband microwave absorption. J Mater Sci Technol. 2023;144:45-53. doi: 10.1016/j.jmst.2022.10.012

 

  1. Lu Y, Chi B, Liu D, et al. Wideband metamaterial absorbers based on conductive plastic with additive manufacturing technology. ACS Omega. 2018;3(9):11144-11150. doi: 10.1021/acsomega.8b01223

 

  1. Sun H, Zhang Y, Wu Y, et al. Broadband and high-efficiency microwave absorbers based on pyramid structure. ACS Appl Mater Interfaces. 2022;14(46):52182-52192. doi: 10.1021/acsami.2c16166

 

  1. Gong P, Hao L, Li Y, Li Z, Xiong W. 3D-printed carbon fiber/ polyamide-based flexible honeycomb structural absorber for multifunctional broadband microwave absorption. Carbon. 2021;185:272-281. doi: 10.1016/j.carbon.2021.09.014

 

  1. Yang Z, Liang Q, Duan Y, Li Z, Li D, Cao Y. A 3D-printed lightweight broadband electromagnetic absorbing metastructure with preserved high-temperature mechanical property. Compos Struct. 2021;274:114330. doi: 10.1016/j.compstruct.2021.114330

 

  1. Jiang W, Yan L, Ma H, et al. Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb. Sci Rep. 2018;8(1):4817. doi: 10.1038/s41598-018-23286-6

 

  1. Dong H, Gao S, Yu C, et al. Enhancing microwave absorption of bio-inspired structure through 3D printed concentric infill pattern. Compos B Eng. 2025;289:111924. doi: 10.1016/j.compositesb.2024.111924

 

  1. Ren J, Yin JY. 3D-printed low-cost dielectric-resonator-based ultra-broadband microwave absorber using carbon-loaded acrylonitrile butadiene styrene polymer. Materials (Basel). 2018;11(7):1249. doi: 10.3390/ma11071249

 

  1. An Q, Li D, Liao W, et al. Electromagnetic absorption mechanism of TPMS‐based metastructures: Synergy between materials and structures. Adv Funct Mater. 2025;35(5):2414629. doi: 10.1002/adfm.202414629

 

  1. Li D, Zheng X, Gu H, et al. Gradient honeycomb metastructure with broadband microwave absorption and effective mechanical resistance. Nano Mater Sci. 2024;6(4):456-466. doi: 10.1016/j.nanoms.2023.09.005

 

  1. Liu Z, Zhang R, Wang S, Zhao W, Yu G, Wu L. Design and fabrication of an all-composite ultra-broadband absorbing structure with superior load-bearing capacity. Compos Sci Technol. 2023;240:110094. doi: 10.1016/j.compscitech.2023.110094

 

  1. Qin H, Ding S, Ashour A, Zheng Q, Han B. Revolutionizing infrastructure: The evolving landscape of electricity-based multifunctional concrete from concept to practice. Prog Mater Sci. 2024:101310. doi: 10.1016/j.pmatsci.2024.101310

 

  1. Rithika K, Sudha J. Additive manufacturing of fiber‐reinforced composites-a comprehensive overview. Polym Adv Technol. 2024;35(12):e70002. doi: 10.1002/pat.70002

 

  1. Zhang Y, Zheng W, Wang Y, et al. A review of 3D printing continuous carbon fiber reinforced thermoplastic polymers: Materials, processes, performance enhancement, and failure analysis. Polym Compos. 2025;46(10):1-31. doi: 10.1002/pc.29895

 

  1. Ding A, Tang F, Alsberg E. 4D printing: A comprehensive review of technologies, materials, stimuli, design, and emerging applications. Chem Rev. 2025;125(7):3663-3771. doi: 10.1021/acs.chemrev.4c00070

 

  1. Gackowski BM, Sharma M, Koh XQ, et al. Surface engineering of carbon nanotube-carbon fiber networks for enhanced strength in additive manufacturing of nylon composites. Compos A Appl Sci Manuf. 2024;186:108383. doi: 10.1016/j.compositesa.2024.108383

 

  1. Zhao X, Bai Y, Lu T, Lu Y. 3D-printed shape memory absorber based on CE/CNTs/CIP ternary composites for tunable and wideband electromagnetic wave absorption. Appl Mater Today. 2024;41:102504. doi: 10.1016/j.apmt.2024.102504

 

  1. Khan M, Refati MFAD, Arup MMR, Islam MA, Mobarak MH. Conductive polymer‐based electronics in additive manufacturing: Materials, processing, and applications. Adv Polym Technol. 2025;1:4234491. doi: 10.1155/adv/4234491

 

  1. Liang J, Yue Q, Liu X, Li N. Enhancing mechanical properties of CFRP with oriented nickel plated short carbon fibers in a magnetic field. Polym Compos. 2024;46:7377-7389. doi: 10.1002/pc.29436

 

  1. Hareesh M, Joseph P, George S. Electromagnetic interference shielding: A comprehensive review of materials, mechanisms, and applications. Nanoscale Adv. 2025;8:1-27. doi: 10.1039/d5na00240k

 

  1. Nan Z, Wei W, Lin Z, Ouyang J, Chang J, Hao Y. Flexible electromagnetic interference shields: Materials, structure and multifunctionalization. Mater Sci Eng R Rep. 2024;160:100823. doi: 10.1016/j.mser.2024.100823

 

  1. Jaganathan S, Kandasamy R, Venkatachalam R, Gunalan M, Dhairiyasamy R. Advances in optimizing mechanical performance of 3D‐printed polymer composites: A microstructural and processing enhancements review. Adv Polym Technol. 2024;1:3168252. doi: 10.1155/2024/3168252

 

 

  1. Liu F, Wang S, Zhang W, Ding X, Ferraris E, Ivens J. Mechanical and interfacial analysis of 3D-printed two-matrix continuous carbon fibre composites for enhanced structural performance. Compos A Appl Sci Manuf. 2024;180:108105. doi: 10.1016/j.compositesa.2024.108105

 

  1. Ren J, Mu Z, Sellami R, et al. Multifunctions of microwave-absorbing materials and their potential cross-disciplinary applications: A mini-review. Adv Compos Hybrid Mater. 2025;8(2):1-25. doi: 10.1007/s42114-025-01258-5

 

  1. Liu G, Xiong Y, Zhou L. Additive manufacturing of continuous fiber reinforced polymer composites: Design opportunities and novel applications. Compos Commun. 2021;27:100907. doi: 10.1016/j.coco.2021.100907

 

  1. Tamburrino F, Barone S, Paoli A, Razionale A. Post-processing treatments to enhance additively manufactured polymeric parts: A review. Virtual Phys Prototyp. 2021;16(2):221-254. doi: 10.1080/17452759.2021.1917039

 

  1. Loh TW, Ladani RB, Orifici A, Kandare E. Ultra-tough and in-situ repairable carbon/epoxy composite with EMAA. Compos A Appl Sci Manuf. 2021;143:106206. doi: 10.1016/j.compositesa.2020.106206

 

  1. Liu Y, Liu X, Lu J, et al. Post-treatment technologies for high-speed additive manufacturing: Status, challenge and tendency. J Mater Res Technol. 2024;. doi: 10.1016/j.jmrt.2024.03.110

 

  1. Persad J, Rocke S. A survey of 3D printing technologies as applied to printed electronics. IEEE Access. 2022;10: 27289-27319. doi: 10.1109/ACCESS.2022.3157833

 

  1. Yadav RS, Anju, Kuřitka I. Spinel ferrite and MXene-based magnetic novel nanocomposites: An innovative high-performance electromagnetic interference shielding and microwave absorber. Crit Rev Solid State Mater Sci. 2022;48(4):441-479. doi: 10.1080/10408436.2022.2067122

 

  1. Fonseca JH, Jang W, Han D, Kim N, Lee H. Strength and manufacturability enhancement of a composite automotive component via an integrated finite element/artificial neural network multi-objective optimization approach. Compos Struct. 2024;327:117694. doi: 10.1016/j.compstruct.2023.117694

 

  1. Badini S, Regondi S, Pugliese R. Enhancing mechanical and bioinspired materials through generative AI approaches. Next Mater. 2025;6:100275. doi: 10.1016/j.nxmate.2024.100275

 

  1. Badini S, Regondi S, Pugliese R. Unleashing the power of artificial intelligence in materials design. Materials (Basel). 2023;16(17):5927. doi: 10.3390/ma16175927

 

  1. Zhu J, Li H, Yi J, et al. Electromagnetic techniques in carbon fibre and carbon fibre composites manufacturing: A review. Compos B Eng. 2025;296:112227. doi: 10.1016/j.compositesb.2025.112227

 

  1. Rosario AJ, Ma B. Stimuli-responsive polymer networks: Application, design, and computational exploration. ACS Appl Polym Mater. 2024;6(23):14204-14228. doi: 10.1021/acsapm.4c00002

 

  1. Yin S, Huang Y, Wang Y, Wang Y, Xiao H. Tough and flexible poly (dimethylsiloxane) elastomer reinforced by conductive bacterial cellulose frameworks for high-performance microwave absorber. Cellulose. 2021;29:259-272. doi: 10.1007/s10570-021-04276-w

 

  1. Zhou Z, Li W, Qian J, et al. Flexible liquid crystal polymer technologies from microwave to terahertz frequencies. Molecules. 2022;27(4):1336. doi: 10.3390/molecules27041336

 

  1. Rajendran S, Al‐Samydai A, Palani G, et al. Replacement of petroleum based products with plant‐based materials, green and sustainable energy-a review. Eng Rep. 2025;7(4):e70108. doi: 10.1002/eng2.70108

 

  1. Zhang J, Duan C, Huang X, et al. A review on research progress and prospects of agricultural waste-based activated carbon: Preparation, application, and source of raw materials. J Mater Sci. 2024;59(13):5271-5292. doi: 10.1007/s10853-024-09526-3

 

  1. Wang Y, Wang K, Zhang C. Applications of artificial intelligence/machine learning to high-performance composites. Compos B: Eng. 2024;283:111740. doi: 10.1016/j.compositesb.2024.111740

 

  1. Jiang J, Xiong Y, Zhang Z, Rosen DW. Machine learning integrated design for additive manufacturing. J Intell Manuf. 2022;33(4):1073-1086. doi: 10.1007/s10845-020-01715-6

 

  1. Ren H, Chen Z, Wang D, Rosen DW, Xiong Y. Performance and manufacturability co-driven process planning for topology-optimized structures fabricated by continuous fiber-reinforced polymer additive manufacturing. Compos A Appl Sci Manuf. 2025;192:108813. doi: 10.1016/j.compositesa.2025.108813

 

  1. Sun C, Li D, Liu T, et al. Design of functionally gradient metastructure with ultra-broadband and strong absorption. Compos B Eng. 2024;280:111484. doi: 10.1016/j.compositesb.2024.111484

 

  1. Babu SS, Mourad AH, Harib KH, Vijayavenkataraman S. Recent developments in the application of machine-learning towards accelerated predictive multiscale design and additive manufacturing. Virtual Phys Prototyp. 2023;18(1):e2141653. doi: 10.1080/17452759.2022.2141653

 

  1. Zhao D, Zhou Z, Ruan K, et al. In-process density measurement for model-based process optimization of functionally graded foam microcellular structures in material extrusion additive manufacturing. Addit Manuf. 2025;106:104817. doi: 10.1016/j.addma.2025.104817

 

  1. Zhu E, Zong Z, Li E, et al. Frequency transfer and inverse design for metasurface under multi-physics coupling by Euler latent dynamic and data-analytical regularizations. Nat Commun. 2025;16(1):2251. doi: 10.1038/s41467-025-57516-z

 

  1. Zhao D, Wang Z, Zhou Z, et al. Multiscale design of CFRPC sandwich structures with foam core: Microcellular optimization and compressive property evaluation. Polym Compos. 2025;46(11):1-14. doi: 10.1002/pc.30032

 

Share
Back to top
Engineering Science in Additive Manufacturing, Published by AccScience Publishing