Impact of machine factors on the surface quality of parts fabricated via powder bed fusion

In the growing additive manufacturing industry, there is increasing demand for improved as-built surface quality of parts fabricated by the powder bed fusion (PBF) process, particularly in the aerospace, medical, and tooling industrial sectors. The surface finish of PBF parts is often suboptimal due to the inherent layer-by-layer fabrication process. Depending on the material used, the average surface roughness (Ra) of PBF components typically ranges from 5 to 50 μm. To address this issue, various strategies have been investigated, including optimizing printing process parameters, refining support designs, and upgrading laser hardware. In this study, we investigated the machine factors on the as-built surface quality of parts in the PBF process. Fully dense as-built 1.2709 tool steel parts were produced with a relative density of 99.9% using platform pre-heating. Without heat treatment, the as-built part exhibited an ultimate tensile strength of 1,135 ± 75 MPa, yield strength of 915 ± 120 MPa, and an elongation of 12 ± 3%. Vickers hardness was measured at 339 ± 35. Surface measurements were performed on parts placed across the substrate plate, with the Ra of as-built vertical walls averaging 22.6 ± 11.9 mm. Results showed that the surface quality of as-built 1.2709 tool steel parts, with a layer thickness of 30 μm, was significantly affected by their distance from the inert gas outlet and the laser center. This study demonstrates that the as-built surface quality of PBF parts can be controlled through more effective build job preparation without changing key processing parameters.
- ISO/ASTM. Additive Manufacturing -- General Principles -- Part 2: Overview of Process Categories and Feedstock, ISO Online Browsing Platform; 2021. Available from: https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-2:v1:en [Last accessed on 2025 May 12].
- Sing SL, Yeong WY, Wiria FE, et al. Direct selective laser sintering and melting of ceramics: A review. Rapid Prototyp J. 2017;23(3):611-623. doi: 10.1108/RPJ-11-2015-0178
- Wong KV, Hernandez A. A review of additive manufacturing. ISRN Mech Eng. 2012;2012:208760. doi: 10.5402/2012/208760
- Jiao L, Chua ZY, Moon SK, Song J, Bi G, Zheng H. Femtosecond laser produced hydrophobic hierarchical structures on additive manufacturing parts. Nanomaterials. 2018;8(8):601. doi: 10.3390/nano8080601
- Yap CY, Chua CK, Dong ZL, et al. Review of selective laser melting: Materials and applications. Appl Phys Rev. 2015;2(4):041101. doi: 10.1063/1.4935926
- Zhang B, Dembinski L, Coddet C. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder. Mater Sci Eng A. 2013;584:21-31. doi: 10.1016/j.msea.2013.06.055
- Zhang LC, Attar H. Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: A review. Adv Eng Mater. 2016;18(4):463-475. doi: 10.1002/adem.201500419
- Tan JHK, Sing SL, Yeong WY. Microstructure modelling for metallic additive manufacturing: A review. Virtual Phys Prototyp. 2019;15(1):87-105. doi: 10.1080/17452759.2019.1677345
- Boyer RR. An overview on the use of titanium in the aerospace industry. Mater Sci Eng A. 1996;213(1-2):103-114. doi: 10.1016/0921-5093(96)10233-1
- Boyer RR. Applications of beta titanium alloys in airframes. JOM. 1993;45(7):33-46.
- Boyer RR. Aerospace applications of beta titanium alloys. JOM. 1994;46(7):20-23.
- Nagalingam AP, Yeo SH. Controlled hydrodynamic cavitation erosion with abrasive particles for internal surface modification of additive manufactured components. Wear. 2018;414-415:89-100. doi: 10.1016/j.wear.2018.08.006
- Mumtaz K, Hopkinson N. Top surface and side roughness of Inconel 625 parts processed using selective laser melting. Rapid Prototyp J. 2009;15(2):96-103. doi: 10.1108/13552540910943397
- Triantaphyllou A, Giusca CL, Macaulay GD, et al. Surface texture measurement for additive manufacturing. Surf Topogr Metrol Prop. 2015;3(2):024002. doi: 10.1088/2051-672X/3/2/024002
- Nguyen HD, Pramanik A, Basak AK, et al. A critical review on additive manufacturing of Ti-6Al-4V alloy: Microstructure and mechanical properties. J Mater Res Technol. 2022;18:4641-4661. doi: 10.1016/j.jmrt.2022.04.055
- Zhang B, Li Y, Bai Q. Defect formation mechanisms in selective laser melting: A review. Chin J Mech Eng. 2017;30:515-527. doi: 10.1007/s10033-017-0121-5
- Belan J, Bokůvka O, Uhríčik M, Kuchariková L, Vaško A. The influence of quenching on fatigue life of Ti6Al4V alloy. Conf Ser Mater Sci Eng. 2021;1178:012006. doi: 10.1088/1757-899X/1178/1/012006
- Shipley H, McDonnell D, Culleton M, et al. Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: A review. Int J Mach Tools Manuf. 2018;128:1-20. doi: 10.1016/j.ijmachtools.2018.01.003
- Żaba K, Balcerzak M, Kuczek Ł, et al. Application of powder-bed fusion of metals using a laser for manufacturing of M300 maraging steel tools intended for sheet metal bending. Materials (Basel). 2024;17(24):6185. doi: 10.3390/ma17246185
- Raghuraman V, Kumar TS. The impact of different heat treatments on the surface characteristics, residual stresses, and tensile strength of maraging steel 1.2709 parts produced by LPBF. Results Eng. 2025;26:105509. doi: 10.1016/j.rineng.2025.105509
- Marchini L, Tonolini P, Montesano L, et al. The corrosion resistance of maraging steel 1.2709 produced by L-PBF in contact with molten Al-alloys. Procedia Struct Integr. 2024;53:203-211. doi: 10.1016/j.prostr.2024.01.025
- Sawicki J, Stachurski W, Kuryło P, et al. Comparative analysis of the dimensional accuracy and surface characteristics of gears manufactured using the 3D printing (DMLS) technique from 1.2709 steel. Materials (Basel). 2025;18(7):1461. doi: 10.3390/ma18071461
- Asnafi N. Application of laser-based powder bed fusion for direct metal tooling. Metals. 2021;11(3):458. doi: 10.3390/met11030458
- Piekło J, Garbacz-Klempka A, Myszka D, Figurski K. Numerical and experimental analysis of strength loss of 1.2709 maraging steel produced by selective laser melting (SLM) under thermo-mechanical fatigue conditions. Materials (Basel). 2023;16(24):7682. doi: 10.3390/ma16247682
- Strakosova A, Průša F, Michalcová A, Kratochvíl P, Vojtěch D. Annealing response of additively manufactured high-strength 1.2709 maraging steel depending on elevated temperatures. Materials (Basel). 2022;15(11):3753. doi: 10.3390/ma15113753
- Černašėjus O, Škamat J, Markovič V, et al. Surface laser processing of additive manufactured 1.2709 steel parts: Preliminary study. Adv Mater Sci Eng. 2019;2019:7029471. doi: 10.1155/2019/7029471
- Piekło J, Garbacz-Klempka A. Use of maraging steel 1.2709 for implementing parts of pressure mold devices with conformal cooling system. Materials (Basel). 2020;13(23):5533. doi: 10.3390/ma13235533
- Ravi S, Satheeshkumar V, Kumaran M. Mechanical properties and microstructure characterization of stainless steel 316L and maraging steel 1.2709 bimetallic structures fabricated by laser powder bed fusion. J Mater Eng Perform. 2025. doi: 10.1007/s11665-025-11451-8
- Jarfors AEW, Shashidhar ACGH, Yepur HK, Steggo J, Andersson NE, Stolt R. Build strategy and impact strength of SLM produced maraging steel (1.2709). Metals. 2021;11(1):51. doi: 10.3390/met11010051
- Jhabvala J, Boillat E, Antignac T, Glardon R. On the effect of scanning strategies in the selective laser melting process. Virtual Phys Prototyp. 2010;5(2):99-109. doi: 10.1080/17452751003688368
- Jägle EA, Choi PP, Van Humbeeck J, Raabe D. Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting. J Mater Res. 2014;29(17):2072-2079. doi: 10.1557/jmr.2014.204
- Hoseini SRE, Arabi H, Razavizadeh H. Improvement in mechanical properties of C300 maraging steel by application of VAR process. Vacuum. 2008;82(5):521-528. doi: 10.1016/j.vacuum.2007.08.008
- Hatos I, Hargitai H, Fekete G, Fekete I. Effect of energy density on the mechanical properties of 1.2709 maraging steel produced by laser powder bed fusion. Materials (Basel). 2024;17(14):3432. doi: 10.3390/ma17143432
- Kumaran M, Ravi S. Influence of hybrid additive manufacturing processes on the microstructure and mechanical properties of maraging steel 1.2709 components with post-processing heat treatments. Mater Lett. 2024;377:137427. doi: 10.1016/j.matlet.2024.137427
- Vinoth V, Kumaran M, Ravi S. Investigation of heat treatment effects on hybrid manufacturing of stainless steel 316L components using directed energy deposition: Microstructural and tensile behavior analysis. J Mater Eng Perform. 2025. doi: 10.1007/s11665-025-11023-w
- Kučerová L, Zetková I, Jeníček Š, Burdová K. Production of hybrid joints by selective laser melting of maraging tool steel 1.2709 on conventionally produced parts of the same steel. Materials (Basel). 2021;14(9):2105. doi: 10.3390/ma14092105
- Simm TH, Sun L, Galvin DR, et al. The effect of a two-stage heat-treatment on the microstructural and mechanical properties of a maraging steel. Materials (Basel). 2017;10(12):1346. doi: 10.3390/ma10121346
- Monkova K, Zetkova I, Kučerová L, et al. Study of 3D printing direction and effects of heat treatment on mechanical properties of MS1 maraging steel. Arch Appl Mech. 2019;89:791-804. doi: 10.1007/s00419-018-1389-3
- Mutua J, Nakata S, Onda T, Chen ZC. Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel. Mater Des. 2018;139:486-497. doi: 10.1016/j.matdes.2017.11.042
- Tan C, Zhou K, Ma W, Zhang P, Liu M, Kuang T. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel. Mater Des. 2017;134:23-34. doi: 10.1016/j.matdes.2017.08.026
- Mooney B, Kourousis KI, Raghavendra R. Plastic anisotropy of additively manufactured maraging steel: Influence of the build orientation and heat treatments. Addit Manuf. 2019;25:19-31. doi: 10.1016/j.addma.2018.10.032
- Bai Y, Yang Y, Wang D, Zhang M. Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting. Mater Sci Eng A. 2017;703:116-123. doi: 10.1016/j.msea.2017.06.033