Superior mechanical properties of interpenetrating phase composites integrating 3D-printed metal microlattice and infiltrating epoxy

The synergistic optimization of strength and toughness remains a critical challenge for mechanical metamaterials. To address this, this study aimed to investigate the interpenetrating phase composite (IPC) integrating metal-enhanced phase and epoxy-infiltrated phase with the hope to achieve superior strength-toughness properties. Truss microlattices and IPC specimens with conventional, reinforced, and hierarchical architectures were fabricated using selective laser melting and epoxy infiltration techniques. Experimental results show that the IPC metamaterials exhibited progressive large-deformation collapse sequences, mitigating the catastrophic collapse observed in pure truss microlattices. The IPCs demonstrated a synergistic enhancement (1 + 1 >2), with compressive strength exceeding the linear summation of constituent phases by up to 47.93% and specific energy absorption improved by 153.54% compared to pure truss microlattices. These improvements stem from interfacial interactions between the metal and epoxy phases, which enhance compressive strength during initial deformation, and achieve mutual crushing-supporting mechanism that promotes stable deformation in later stages. This study highlights significant performance enhancements in IPCs and offers insights into designing high strength-toughness metamaterials.
- Zhong H, Das R, Gu J, Qian M. Low-density. High-strength metal mechanical metamaterials beyond the Gibson-Ashby model. Mater Today. 2023;68:96-107. doi: 10.1016/j.mattod.2023.07.018
- Ye J, Sun Z, Ding Y, Zheng Y, Zhou F. The deformation mechanism, energy absorption behavior and optimal design of vertical-reinforced lattices. Thin Wall Struct. 2023;190:110988. doi: 10.1016/j.tws.2023.110988
- Mori T, Wang H, Zhang W, et al. Pick and place process for uniform shrinking of 3D printed micro- and nano-architected materials. Nat Commun. 2023;14(1):5876. doi: 10.1038/s41467-023-41535-9
- Li Z, Zeng K, Guo Z, et al. All-in-one: An interwoven dual-phase strategy for acousto-mechanical multifunctionality in microlattice metamaterials. Adv Funct Mater. 2024:2420207. doi: 10.1002/adfm.202420207
- Gao T, Liu K, Ma Q, et al. Unveiling the mechanics of micro- LPBF manufactured hierarchical composites: A novel FE-nested homogenisation approach. Virtual Phys Prototy. 2025;20(1):e2456693. doi: 10.1080/17452759.2025.2456693
- Wang P, Yang F, Li P, Zhang W, Lu G, Fan H. Bio-inspired vertex modified lattice with enhanced mechanical properties. Int J Mech Sci. 2023;244:108081. doi: 10.1016/j.ijmecsci.2022.108081
- Zhang Z, Zhang L, Song B, Yao Y, Shi Y. Bamboo-inspired, simulation-guided design and 3D printing of light-weight and high-strength mechanical metamaterials. Appl Mater Today. 2022;26:101268. doi: 10.1016/j.apmt.2021.101268
- Sun B, Yan X, Liu P, Xia Y, Lu L. Parametric plate lattices: Modeling and optimization of plate lattices with superior mechanical properties. Addit Manuf. 2023;72:103626. doi: 10.1016/j.addma.2023.103626
- Wu J, Zhang Y, Yang F, et al. A hybrid architectural metamaterial combing plate lattice and hollow-truss lattice with advanced mechanical performances. Addit Manuf. 2023;76:103764. doi: 10.1016/j.addma.2023.103764
- Bian Y, Wang R, Yang F, et al. Mechanical properties of internally hierarchical multiphase lattices inspired by precipitation strengthening mechanisms. ACS Appl Mater Interfaces. 2023;15(12):15928-15937. doi: 10.1021/acsami.2c20063
- Wang X, Li X, Li Z, Wang Z, Zhai W. Superior strength, toughness, and damage-tolerance observed in microlattices of aperiodic unit cells. Small. 2024;20(23):2307369. doi: 10.1002/smll.202307369
- Li Z, Wang X, Li X, Wang Z, Zhai W. New class of multifunctional bioinspired microlattice with excellent sound absorption, damage tolerance, and high specific strength. ACS Appl Mater Interfaces. 2023;15(7):9940-9952. doi: 10.1021/acsami.2c19456
- Xiao L, Xu X, Feng G, Li S, Song W, Jiang Z. Compressive performance and energy absorption of additively manufactured metallic hybrid lattice structures. Int J Mech Sci. 2022;219:107093. doi: 10.1016/j.ijmecsci.2022.107093
- Wei YL, Yang QS, Liu X, Tao R. Multi-bionic mechanical metamaterials: A composite of FCC lattice and bone structures. Int J Mech Sci. 2022;213:106857. doi: 10.1016/j.ijmecsci.2021.106857
- Zhao M, Zhang DZ, Li Z, Zhang T, Zhou H, Ren Z. Design, mechanical properties, and optimization of BCC lattice structures with taper struts. Compos Struct. 2022;295(12):115830. doi: 10.1016/j.compstruct.2022.115830
- Cheng H, Zhu X, Cheng X, et al. Mechanical metamaterials made of freestanding quasi-BCC nanolattices of gold and copper with ultra-high energy absorption capacity. Nat Commun. 2023;14(1):1243. doi: 10.1038/s41467-023-36965-4
- Li X, Tan YH, Wang P, et al. Metallic microlattice and epoxy interpenetrating phase composites: Experimental and simulation studies on superior mechanical properties and their mechanisms. Compos Part A Appl Sci Manuf. 2020;135:105934. doi: 10.1016/j.compositesa.2020.105934
- Lee G, Jeong SG, Kwon J, et al. Shear deformation behavior of additively manufactured 316L stainless steel lattice structures. Addit Manuf. 2024;93:104425. doi: 10.1016/j.addma.2024.104425
- Jiang F, Seetoh IP, Lee H, et al. Compound nested lattices with programmable isotropy and elastic stiffness up to the theoretical limit. Compos Part B Eng. 2024;284:111656. doi: 10.1016/j.compositesb.2024.111656
- Bouteldja A, Louar MA, Hemmouche L, Gilson L, Miranda- Vicario A, Rabet L. Experimental investigation of the quasi-static and dynamic compressive behavior of polymer-based 3D-printed lattice structures. Int J Impact Eng. 2023;180:104640. doi: 10.1016/j.ijimpeng.2023.104640
- Nguyen PC, Ryu I. Size dependent scaling law of plastic flow in FCC nanolattices: A dislocation dynamics study. Acta Mater. 2024;274:120022. doi: 10.1016/j.actamat.2024.120022
- Zhang J, An Q. Topology optimization of fibre reinforced polymer lattice structures for additive manufacturing. Compos Sci Technol. 2023;242:110144. doi: 10.1016/j.compscitech.2023.110144
- Zhang W, Chen J, Li X, Lu Y. Liquid metal-polymer microlattice metamaterials with high fracture toughness and damage recoverability. Small. 2020;16(46):2004190. doi: 10.1002/smll.202004190
- Liu C, Ni R, Ji K, Zhao A, Sun X, Wu H. Improving mechanical properties of lattice structures using nonuniform hollow struts. Int J Mech Sci. 2024;283:109674. doi: 10.1016/j.ijmecsci.2024.109674
- Wu W, Xia R, Qian G, et al. Mechanostructures: Rational mechanical design, fabrication, performance evaluation, and industrial application of advanced structures. Prog Mater Sci. 2023;131:101021. doi: 10.1016/j.pmatsci.2022.101021
- Wang X, Li X, Li Z, Wang Z, Zhai W. A ribbed strategy disrupts conventional metamaterial deformation mechanisms for superior energy absorption. Virtual Phys Prototy. 2024;19(1):e2337310. doi: 10.1080/17452759.2024.2337310
- Zeng Q, Xu M, Wang M, et al. Mechanical properties of additively manufactured AlSi10Mg alloy gradient honeycomb with rib reinforcement at different strain rates. Thin Wall Struct. 2025;208:112821. doi: 10.1016/j.tws.2024.112821
- Wang Z, Zhou Y, Wang X, Wei K. Compression behavior of strut-reinforced hierarchical lattice-experiment and simulation. Int J Mech Sci. 2021;210:106749. doi: 10.1016/j.ijmecsci.2021.106749
- Wang P, Yang F, Zheng B, et al. Breaking the tradeoffs between different mechanical properties in bioinspired hierarchical lattice metamaterials. Adv Funct Mater. 2023;33(45):2305978. doi: 10.1002/adfm.202305978
- Liu C, Pham MS. Spatially programmable architected materials inspired by the metallurgical phase engineering. Adv Mater. 2024;36(8):2305846. doi: 10.1002/adma.202305846
- Gu D, Shi X, Poprawe R, Bourell DL, Setchi R, Zhu J. Material-structure-performance integrated laser-metal additive manufacturing. Science. 2021;372(6545):eabg1487. doi: 10.1126/science.abg1487
- Noronha J, Rogers J, Leary M, et al. Ti-6Al-4V hollow-strut lattice materials by laser powder bed fusion. Addit Manuf. 2023;72:103637. doi: 10.1016/j.addma.2023.103637
- Eren O, Yüksel N, Börklü HR, Sezer HK, Canyurt OE. Deep learning-enabled design for tailored mechanical properties of SLM-manufactured metallic lattice structures. Eng Appl Artif Intell. 2024;130:107685. doi: 10.1016/j.engappai.2023.107685
- Lei M, Wang P, Duan S, Wen W, Liang J. An emerging shellwich lattice material: Unlocking design freedom and enhancing mechanical properties. Compos Part A Appl Sci Manuf. 2024;185:108316. doi: 10.1016/j.compositesa.2024.108316
- Deng J, Xu C, Wang X, Zhao R, Li T, Wang Z. Design and optimization for honeycomb-like structures with hybridizing hierarchy and gradient strategies. Mech Adv Mater Struct. 2024;1-15. doi: 10.1080/15376494.2024.2429749
- Su R, Chen J, Zhang X, et al. 3D-Printed micro/nano-scaled mechanical metamaterials: Fundamentals, technologies, progress, applications, and challenges. Small. 2023;19(29):2206391. doi: 10.1002/smll.202206391
- Wang X, Li Z, Deng J, et al. Unprecedented strength enhancement observed in interpenetrating phase composites of aperiodic lattice metamaterials. Adv Funct Mater. 2024;35(1):2406890. doi: 10.1002/adfm.202406890
- ISO/ASTM 52900:2015. Additive Manufacturing-General Principles-Terminology. Geneva, Switzerland: International Organization for Standardization; 2015.
- ISO 13314:2011. Mechanical Testing of Metals. Ductility Testing. Compression Test for Porous and Cellular Metals. Geneva, Switzerland: International Organization for Standardization; 2011.
- Tancogne-Dejean T, Li X, Diamantopoulou M, Roth CC, Mohr D. High strain rate response of additively-manufactured plate-lattices: Experiments and modeling. J Dyn Behav Mater. 2019;5(3):361-375. doi: 10.1007/s40870-019-00219-6
- Seetoh IP, Liu X, Markandan K, Zhen L, Lai CQ. Strength and energy absorption characteristics of Ti6Al4V auxetic 3D anti-tetrachiral metamaterials. Mech Mater. 2021;156:103811. doi: 10.1016/j.mechmat.2021.103811
- Rezapourian M, Jasiuk I, Saarna M, Hussainova I. Selective laser melted Ti6Al4V split-P TPMS lattices for bone tissue engineering. Int J Mech Sci. 2023;251:108353. doi: 10.1016/j.ijmecsci.2023.108353
- Eren Z, Gokcekaya O, Nakano T, Mecitoğlu Z. In-plane quasi-static compression deformation of Ti6Al4V double arrow-headed lattice structures fabricated by electron beam powder bed fusion process: Build orientation, scan speed and failure mechanism. J Mater Res Technol. 2023;27:6192- 6210. doi: 10.1016/j.jmrt.2023.11.027
- Singh A, Al-Ketan O, Karathanasopoulos N. Highly strain-rate sensitive and ductile composite materials combining soft with stiff TPMS polymer-based interpenetrating phases. Compos Struct. 2024;328:117646. doi: 10.1016/j.compstruct.2023.117646
- Wang M, Zhang J, Wang W. Compression and deformation behaviors of hierarchical circular-cell lattice structure with enhanced mechanical properties and energy absorption capacity. Aerospace. 2022;9(12):786. doi: 10.3390/aerospace9120786
- Wang M, Zhang J, Wang W, Gao L. Compression behaviors of the bio-inspired hierarchical lattice structure with improved mechanical properties and energy absorption capacity. J Mater Res Technol. 2022;17:2755-2771. doi: 10.1016/j.jmrt.2022.02.046