Differential gene expression and gene ontology associated with breast cancer development and progression: A meta-analysis study
Introduction: Breast cancer (BC) is heterogeneous and remains a major health priority. Robust biomarkers are needed to improve early detection and guide therapy.
Objective: This study investigates the molecular mechanisms underlying BC development (normal versus cancer) and progression (early versus late).
Methods: A meta-analysis of 51 microarray studies comparing BC and normal cells, as well as early- and late-stage BC cells, was conducted using microarray data obtained from the Gene Expression Omnibus and ArrayExpress databases. Five meta-analysis methods, each based on different statistical approaches, were applied, and the overlapping results were identified.
Results: A total of 3,362 and 95 differentially expressed genes (DEGs) associated with BC development and progression were identified. Among these DEGs, the upregulation of COL10A1, COL11A1, TOP2A, CDK1, MMP11, and S100P and the downregulation of ADH1B, SFRP1, DST, LEP, ADIPOQ, and CHRDL1 were the most significantly associated with BC development. DEGs such as DHTKD1 and CBX3 (upregulated) and MAP3K20 (downregulated) were found to be among the most significantly differentially expressed in BC progression. The top gene ontology terms enriched in BC development included regulation of signaling receptor activity and cytokine-mediated signaling pathway. In addition, the cellular macromolecule biosynthetic process and response to organic substances were significantly enriched in BC progression.
Conclusion: Many of the DEGs may serve as potential therapeutic targets for BC.
- Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263. doi: 10.3322/caac.21834
- Einbeigi Z, Bergman A, Kindblom LG, et al. A founder mutation of the BRCA1 gene in Western Sweden associated with a high incidence of breast and ovarian cancer. Eur J Cancer. 2001;37(15):1904-1909. doi: 10.1016/S0959-8049(01)00223-4
- Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747-752. doi: 10.1038/35021093
- Shah R, Rosso K, Nathanson SD. Pathogenesis, prevention, diagnosis and treatment of breast cancer. World J Clin Oncol. 2014;5(3):283-298. doi: 10.5306/wjco.v5.i3.283
- Donepudi MS, Kondapalli K, Amos SJ, Venkanteshan P. Breast cancer statistics and markers. J Cancer Res Ther. 2014;10(3):506-511. doi: 10.4103/0973-1482.137927
- Rakha EA, Reis-Filho JS, Baehner F, et al. Breast cancer prognostic classification in the molecular era: The role of histological grade. Breast Cancer Res. 2010;12(4):207. doi: 10.1186/bcr2607
- Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270(5235):467-470. doi: 10.1126/science.270.5235.467
- Montel V, Huang TY, Mose E, Pestonjamasp K, Tarin D. Expression profiling of primary tumors and matched lymphatic and lung metastases in a xenogeneic breast cancer model. Am J Pathol. 2005;166(5):1565-1579. doi: 10.1016/S0002-9440(10)62372-3
- Clough E, Barrett T. The gene expression omnibus database. Methods Mol Biol. 2016;1418:93-110. doi: 10.1007/978-1-4939-3578-9_5
- Brazma A, Parkinson H, Sarkans U, et al. ArrayExpress-a public repository for microarray gene expression data at the EBI. Nucleic Acids Res. 2005;33(Database issue):D553-D555. doi: 10.1093/nar/gki056
- Miller MB, Tang YW. Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev. 2009;22(4):611-633. doi: 10.1128/CMR.00019-09
- Tseng GC, Ghosh D, Feingold E. Comprehensive literature review and statistical considerations for microarray meta-analysis. Nucleic Acids Res. 2012;40(9):3785-3799. doi: 10.1093/nar/gkr1265
- Hu P, Wang X, Haitsma JJ, et al. Microarray meta-analysis identifies acute lung injury biomarkers in donor lungs that predict development of primary graft failure in recipients. PLoS One. 2012;7(10):e45506. doi: 10.1371/journal.pone.0045506
- Karn T, Metzler D, Ruckhäberle E, et al. Data driven derivation of cutoffs from a pool of 3,030 Affymetrix arrays to stratify distinct clinical types of breast cancer. Breast Cancer Res Treat. 2010;120(3):567-579. doi: 10.1007/s10549-009-0416-z
- Sotiriou C, Wirapati P, Loi S, et al. Gene expression profiling in breast cancer: Understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst. 2006;98(4):262-272. doi: 10.1093/jnci/djj052
- Naorem LD, Muthaiyan M, Venkatesan A. Integrated network analysis and machine learning approach for the identification of key genes of triple-negative breast cancer. J Cell Biochem. 2019;120(4):6154-6167. doi: 10.1002/jcb.27903
- Li Y, Bai W, Zhang L. The overexpression of CD80 and ISG15 are associated with the progression and metastasis of breast cancer by a meta-analysis integrating three microarray datasets. Pathol Oncol Res. 2020;26(1):443-452. doi: 10.1007/s12253-018-0478-5
- Meng L, Xu Y, Xu C, Zhang W. Biomarker discovery to improve prediction of breast cancer survival: Using gene expression profiling, meta-analysis, and tissue validation. Onco Targets Ther. 2016;9:6177-6185. doi: 10.2147/OTT.S113855
- DuMouchel WH, Harris JE. Bayes methods for combining the results of cancer studies in humans and other species. J Am Stat Assoc. 1983;78:293-315. doi: 10.1080/01621459.1983.10477968
- Fisher RA. Statistical Methods for Research Workers. Edinburgh: Oliver & Boyd; 1950. p. 11.
- Parmigiani G, Garrett ES, Anbazhagan R, Gabrielson E. A statistical framework for expression-based molecular classification in cancer. J R Stat Soc Ser B Stat Methodol. 2002;64:717-736. doi: 10.1111/1467-9868.00358
- Campain A, Yang YH. Comparison study of microarray meta-analysis methods. BMC Bioinformatics. 2010;11:408. doi: 10.1186/1471-2105-11-408
- Breitling R, Armengaud P, Amtmann A, Herzyk P. Rank products: A simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett. 2004;573:83-92. doi: 10.1016/j.febslet.2004.07.055
- Tan PK, Downey TJ, Spitznagel EL Jr., et al. Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res. 2003;31(19):5676-5684. doi: 10.1093/nar/gkg763
- Mabbott NA, Baillie JK, Hume DA, Freeman TC. Meta-analysis of lineage-specific gene expression signatures in mouse leukocyte populations. Immunobiology. 2010;215(9- 10):724-736. doi: 10.1016/j.imbio.2010.05.012
- Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249-264. doi: 10.1093/biostatistics/4.2.249
- Fisher RA. Statistical Methods for Research Workers. Edinburgh: Genesis Publishing; 1925.
- Stouffer SA. A study of attitudes. Sci Am. 1949;180(5):11-15. doi: 10.1038/scientificamerican0549-11
- Wishart J. The methods of statistics: An introduction mainly for workers in the biological sciences; the combination of observation. Nature. 1932;130:491-492. doi: 10.1038/130491a0
- Wilkinson B. A statistical consideration in psychological research. Psychol Bull. 1951;48(3):156-168. doi: 10.1037/h0059111
- Choi JK, Yu U, Kim S, Yoo OJ. Combining multiple microarray studies and modeling interstudy variation. Bioinformatics. 2003;19(suppl 1):i84-i90. doi: 10.1093/bioinformatics/btg1010
- Zintzaras E, Ioannidis JPA. Meta-analysis for ranked discovery datasets: Theoretical framework and empirical demonstration for microarrays. Comput Biol Chem. 2008;32(1):38-46. doi: 10.1016/j.compbiolchem.2007.09.003
- Alexa A, Rahnenführer J. topGO: Enrichment Analysis for Gene Ontology. R Package Version 2.46.0. Bioconductor; 2020. Available from: https://bioconductor.org/packages/ topGO [Last accessed on 2025 May 01].
- Rivals I, Personnaz L, Taing L, Potier MC. Enrichment or depletion of a GO category within a class of genes: Which test? Bioinformatics. 2007;23(4):401-407. doi: 10.1093/bioinformatics/btl633
- Alexa A, Rahnenführer J, Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics. 2006;22(13):1600-1607. doi: 10.1093/bioinformatics/btl140
- Kumar A, Rajendran V, Sethumadhavan R, Purohit R. Identifying novel oncogenes: A machine learning approach. Interdiscip Sci. 2013;5(4):241-246. doi: 10.1007/s12539-013-0151-3
- Rajendran V, Sethumadhavan R. Drug resistance mechanism of PncA in Mycobacterium tuberculosis. J Biomol Struct Dyn. 2014;32(2):209-221. doi: 10.1080/07391102.2012.759885
- Binns D, Dimmer E, Huntley R, Barrell D, O’Donovan C, Apweiler R. QuickGO: A web-based tool for Gene Ontology searching. Bioinformatics. 2009;25:3045-3046. doi: 10.1093/bioinformatics/btp536
- Gaddy-Kurten D, Tsuchida K, Vale W. Activins and the receptor serine kinase super-family. Recent Prog Horm Res. 1995;50:109-129. doi: 10.1016/b978-0-12-571150-0.50010-x
- Chen YG, Wang Q, Lin SL, Chang CD, Chuang J, Ying SY. Activin signaling and its role in regulation of cell proliferation, apoptosis, and carcinogenesis. Exp Biol Med (Maywood). 2006;231(5):534-544. doi: 10.1177/153537020623100507
- Reis FM, Cobellis L, Tameirão LC, et al. Serum and tissue expression of activin A in postmenopausal women with breast cancer. J Clin Endocrinol Metab. 2002;87(5):2277-2282. doi: 10.1210/jcem.87.5.8512
- Wang J, Jiang H, Huang Z, et al. The expression status of INHBA as a prognostic marker for human breast cancer. Int J Clin Exp Pathol. 2016;9(11):11334-11342.
- Kalli M, Mpekris F, Wong CK, et al. Activin A signaling regulates IL13Rα2 expression to promote breast cancer metastasis. Front Oncol. 2019;9:32. doi: 10.3389/fonc.2019.00032
- Jarde T, Perrier SM, Vasson P, Caldefie-Chezet F. Molecular mechanisms of leptin and adiponectin in breast cancer. Eur J Cancer. 2011;47(1):33-43. doi: 10.1016/j.ejca.2010.09.005
- Niu J, Jiang L, Guo W, Shao L, Liu Y, Wang L. The association between leptin level and breast cancer: A meta-analysis. PLoS One. 2013;8(6):e67349. doi: 10.1371/journal.pone.0067349
- Cleveland R, Gammon MD, Long CM, et al. Common genetic variations in the LEP and LEPR genes, obesity and breast cancer incidence and survival. Breast Cancer Res Treat. 2010;120(3):745-752. doi: 10.1007/s10549-009-0503-1
- Ishikawa M, Kitayama J, Nagawa H. Enhanced expression of leptin and leptin receptor (OB-R) in human breast cancer. Clin Cancer Res. 2004;10(13):4325-4331. doi: 10.1158/1078-0432.CCR-03-0749
- Snoussi K, Strosberg AD, Bouaouina N, Ben Ahmed S, Helal AN, Chouchane L. Leptin and leptin receptor polymorphisms are associated with increased risk and poor prognosis of breast carcinoma. BMC Cancer. 2006;6:38. doi: 10.1186/1471-2407-6-38
- Teras LR, Goodman M, Patel AV, et al. No association between polymorphisms in LEP, LEPR, ADIPOQ, ADIPOR1, or ADIPOR2 and postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2009;18(9):2553-2557. doi: 10.1158/1055-9965.EPI-09-0542
- Woo HY, Park H, Ki CS, Park YL, Bae WG. Relationships among serum leptin, leptin receptor gene polymorphisms, and breast cancer in Korea. Cancer Lett. 2006;237(1):137-142. doi: 10.1016/j.canlet.2005.05.041
- Casey T, Bond J, Tighe S, et al. Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res Treat. 2009;114(1):47-62. doi: 10.1007/s10549-008-9982-8
- Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci. 2002;115(Pt 20):3861-3863. doi: 10.1242/jcs.00059
- Wang J, Du Q, Li C. Bioinformatics analysis of gene expression profiles to identify causal genes in luminal B2 breast cancer. Oncol Lett. 2017;14(6):7880-7888. doi: 10.3892/ol.2017.7256
- Liu X, Ma Y, Yang W, Wu X, Jiang L, Chen X. Identification of therapeutic targets for breast cancer using biological informatics methods. Mol Med Rep. 2015;12(2):1789-1795. doi: 10.3892/mmr.2015.3565
- Kondo N, Toyama T, Sugiura H, Fujii Y, Yamashita H. miR-206 expression is down-regulated in estrogen receptor alpha-positive human breast cancer. Cancer Res. 2008;68(13):5004-5008. doi: 10.1158/0008-5472.CAN-08-0180
- Adams BD, Claffey KP, White BA. Argonaute-2 expression is regulated by epidermal growth factor receptor and MAP kinase signaling and correlates with a transformed phenotype in breast cancer cells. Endocrinology. 2009;150(1):14-23. doi: 10.1210/en.2008-0984
- Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: A changing paradigm. Nat Rev Cancer. 2009;9:153-166. doi: 10.1038/nrc2602
- Morgan DO. Principles of CDK regulation. Nature. 1995;374:131-134. doi: 10.1038/374131a0
- Vassilev LT, Tovar C, Chen S, et al. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc Natl Acad Sci U S A. 2006;103(28):10660-10665. doi: 10.1073/pnas.0600447103
- Finch PW, He X, Kelley MJ, et al. Purification and molecular cloning of a secreted, frizzled-related antagonist of Wnt action. Proc Natl Acad Sci U S A. 1997;94(13):6770-6775. doi: 10.1073/pnas.94.13.6770
- Veeck J, Niederacher D, An H, et al. Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis. Oncogene. 2006;25(24):3479-3488. doi: 10.1038/sj.onc.1209386
- Bernemann C, Hülsewig C, Ruckert C, et al. Influence of secreted frizzled receptor protein 1 (SFRP1) on neoadjuvant chemotherapy in triple-negative breast cancer does not rely on WNT signaling. Mol Cancer. 2014;13:174. doi: 10.1186/1476-4598-13-174
- Klopocki E, Kristiansen G, Wild PJ, et al. Loss of SFRP1 is associated with breast cancer progression and poor prognosis in early stage tumors. Int J Oncol. 2004;25(3):641-649. doi: 10.3892/ijo.25.3.641
- Jeong YJ, Jeong HY, Bong JG, Park SH, Oh HK. Low methylation levels of the SFRP1 gene are associated with the basal-like subtype of breast cancer. Oncol Rep. 2013;29(5):1946-1954. doi: 10.3892/or.2013.2335
- Zhang M, Chen H, Wang M, Bai F, Wu K. Bioinformatics analysis of prognostic significance of COL10A1 in breast cancer. Biosci Rep. 2020;40(2):BSR20193286. doi: 10.1042/BSR20193286
- Brodsky AS, Xiong J, Yang D, et al. Identification of stromal COLXα1 and tumor-infiltrating lymphocytes as putative predictive markers of neoadjuvant therapy in ER+/HER2+ breast cancer. BMC Cancer. 2016;16:274. doi: 10.1186/s12885-016-2302-5
- Chapman KB, Prendes MJ, Sternberg H, et al. COL10A1 expression is elevated in diverse solid tumor types and is associated with tumor vasculature. Future Oncol. 2012;8(8):1031-1040. doi: 10.2217/fon.12.79
- Huang H, Li T, Ye G, et al. High expression of COL10A1 is associated with poor prognosis in colorectal cancer. Onco Targets Ther. 2018;11:1571-1581. doi: 10.2147/OTT.S160196
- Li T, Huang H, Shi G, et al. TGF-β1–SOX9 axis–inducible COL10A1 promotes invasion and metastasis in gastric cancer via epithelial–mesenchymal transition. Cell Death Dis. 2018;9(9):849. doi: 10.1038/s41419-018-0877-2
- Giussani M, Landoni E, Merlino G, et al. Extracellular matrix proteins as diagnostic markers of breast carcinoma. J Cell Physiol. 2018;233(8):6280-6290. doi: 10.1002/jcp.26513
- Turashvili G, Bouchal J, Baumforth K, et al. Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer. 2007;7:55. doi: 10.1186/1471-2407-7-55
- Kim H, Watkinson J, Varadan V, Anastassiou D. Multi-cancer computational analysis reveals invasion-associated variant of desmoplastic reaction involving INHBA, THBS2 and COL11A1. BMC Med Genomics. 2010;3:51. doi: 10.1186/1755-8794-3-51
- Wang JC. Cellular roles of DNA topoisomerases: A molecular perspective. Nat Rev Mol Cell Biol. 2002;3(6):430-440. doi: 10.1038/nrm831
- Chen T, Sun Y, Ji P, Kopetz S, Zhang W. Topoisomerase IIα in chromosome instability and personalized cancer therapy. Oncogene. 2015;34(31):4019-4031. doi: 10.1038/onc.2014.332
- Tewey KM, Rowe TC, Yang L, Halligan BD, Liu LF. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science. 1984;226(4673):466-468. doi: 10.1126/science.6093249
- Mueller RE, Parkes RK, Andrulis I, O’Malley FP. Amplification of the TOP2A gene does not predict high levels of topoisomerase II alpha protein in human breast tumor samples. Genes Chromosomes Cancer. 2004;39(4):288-297. doi: 10.1002/gcc.20008
- Ali Y, Abd Hamid S. Human topoisomerase II alpha as a prognostic biomarker in cancer chemotherapy. Tumour Biol. 2016;37(1):47-55. doi: 10.1007/s13277-015-4270-9
- Martin M, Romero A, Cheang MC, et al. Genomic predictors of response to doxorubicin versus docetaxel in primary breast cancer. Breast Cancer Res Treat. 2011;128(1):127-136. doi: 10.1007/s10549-011-1461-y_xffff_
- Nakagawa M, Bando Y, Nagao T, et al. Expression of p53, Ki-67, E-cadherin, N-cadherin and TOP2A in triple-negative breast cancer. Anticancer Res. 2011;31(6):2389-2393.
- Rody A, Karn T, Ruckhäberle E, et al. Gene expression of topoisomerase II alpha (TOP2A) by microarray analysis is highly prognostic in estrogen receptor-positive breast cancer. Breast Cancer Res Treat. 2009;113(3):457-466. doi: 10.1007/s10549-008-9964-x
- Hua W, Sa KD, Zhang X, et al. MicroRNA-139 suppresses proliferation in luminal-type breast cancer cells by targeting topoisomerase II alpha. Biochem Biophys Res Commun. 2015;463(4):1077-1083. doi: 10.1016/j.bbrc.2015.06.061
- Naghshvar F, Torabizadeh Z, Charati JY, Akbarnezhad M. Relationship between MMP-11 expression in invasive ductal breast. Middle East J Cancer. 2017;8(2):69-75.
- Zhang X, Huang S, Guo J, et al. Insights into the distinct roles of MMP-11 in tumor biology and future therapeutics. Int J Oncol. 2016;48(5):1783-1793. doi: 10.3892/ijo.2016.3400
- González de Vega R, Clases D, Fernández-Sánchez ML, et al. MMP-11 as a biomarker for metastatic breast cancer by immunohistochemical-assisted imaging mass spectrometry. Anal Bioanal Chem. 2019;411(3):639-646. doi: 10.1007/s00216-018-1365-3
- Roscilli G, Cappelletti M, De Vitis C, et al. Circulating MMP-11 and specific antibody immune response in breast and prostate cancer patients. J Transl Med. 2014;12:54. doi: 10.1186/1479-5876-12-54
- Donato R. S100: A multigenic family of calciummodulated proteins of the EFhand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol. 2001;33(7):637-668. doi: 10.1016/S1357-2725(01)00046-2
- Arumugam T, Simeone DM, Van Golen K, Logsdon CD. S100P promotes pancreatic cancer growth, survival, and invasion. Clin Cancer Res. 2005;11(15):5356-5364. doi: 10.1158/1078-0432.CCR-05-0178
- Gibadulinova A, Barathova M, Kopacek J, et al. Expression of S100P protein correlates with and contributes to the tumorigenic capacity of HeLa cervical carcinoma cells. Oncol Rep. 2005;14(2):575-582. doi: 10.3892/or.14.2.575
- Schor AP, Carvalho FM, Kemp C, Silva ID, Russo J. S100P calcium-binding protein expression is associated with high-risk proliferative lesions of the breast. Oncol Rep. 2006;15(1):3-6. doi: 10.3892/or.15.1.3
- Guerreiro da Silva D, Hu YF, Russo IH, et al. S100P calciumbinding protein overexpression is associated with immortalization of human breast epithelial cells in vitro and early stages of breast cancer development in vivo. Int J Oncol. 2000;16(2):231-240. doi: 10.3892/ijo.16.2.231
- Yang R, Stöcker S, Schott S, et al. The association between breast cancer and S100P methylation in peripheral blood by multicenter case-control studies. Carcinogenesis. 2017;38(3):312-320. doi: 10.1093/carcin/bgx004
- Jelski W, Chrostek L, Szmitkowski M, Markiewicz W. The activity of class I, II, III and IV alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in breast cancer. Clin Exp Med. 2006;6(2):89-93. doi: 10.1007/s10238-006-0101-z
- Guo E, Wei H, Liao X, Xu Y, Li S, Zeng X. Prognostic value of alcohol dehydrogenase mRNA expression in gastric cancer. Oncol Lett. 2018;15(4):5505-5516. doi: 10.3892/ol.2018.8007
- Jain PB, Guerreiro PS, Canato S, Janody F. The spectraplakin Dystonin antagonizes YAP activity and suppresses tumourigenesis. Sci Rep. 2019;9(1):19843. doi: 10.1038/s41598-019-56296-z
- Goodwin PJ, Ennis M, Pritchard KI, et al. Fasting insulin and outcome in early-stage breast cancer: Results of a prospective cohort study. J Clin Oncol. 2002;20(1):42-51. doi: 10.1200/JCO.2002.20.1.42
- Cyr-Depauw C, Northey JJ, Tabariès S, et al. Chordin-like 1 suppresses bone morphogenetic protein 4-induced breast cancer cell migration and invasion. Mol Cell Biol. 2016;36(10):1509-1525.doi: 10.1128/MCB.00600-15
- Mishima Y, Jayasinghe CD, Lu K, et al. Nucleosome compaction facilitates HP1γ binding to methylated H3K9. Nucleic Acids Res. 2015;43(21):10200-10212. doi: 10.1093/nar/gkv841
- Singh PB. HP1 proteins-what is the essential interaction? Genetika. 2010;46(10):1424-1429. doi: 10.1134/S1022795410100297
- Jones DO, Mattei MG, Horsley D, Cowell IG, Singh PB. The gene and pseudogenes of Cbx3/mHP1γ. DNA Seq. 2001;12(3):147-160. doi: 10.3109/10425170109080769
- Minc E, Courvalin JC, Buendia B. HP1γ associates with euchromatin and heterochromatin in mammalian nuclei and chromosomes. Cytogenet Cell Genet. 2000;90(3-4):279-284. doi: 10.1159/000056789
- Huang C, Su T, Xue Y, et al. Cbx3 maintains lineage specificity during neural differentiation. Genes Dev. 2017;31(3):241-246. doi: 10.1101/gad.292169.116
- Bot C, Pfeiffer A, Giordano F, Manjeera DE, Dantuma NP, Ström L. Independent mechanisms recruit the cohesin loader protein NIPBL to sites of DNA damage. J Cell Sci. 2017;130(6):1134-1146. doi: 10.1242/jcs.197236
- Velez G, Lin M, Christensen T, Faubion WA, Lomberk G, Urrutia R. Evidence supporting a critical contribution of intrinsically disordered regions to the biochemical behavior of full-length human HP1γ. J Mol Model. 2016;22(1):12. doi: 10.1007/s00894-015-2874-z
- Morikawa K, Ikeda N, Hisatome I, Shirayoshi Y. Heterochromatin protein 1γ overexpression in P19 embryonal carcinoma cells elicits spontaneous differentiation into the three germ layers. Biochem Biophys Res Commun. 2013;431(2):225-231. doi: 10.1016/j.bbrc.2012.12.128
- Thorne JL, Ouboussad L, Lefevre PF. Heterochromatin protein 1 gamma and IκB kinase alpha interdependence during tumour necrosis factor gene transcription elongation in activated macrophages. Nucleic Acids Res. 2012;40(16):7676-7689. doi: 10.1093/nar/gks509
- Smallwood A, Hon GC, Jin F, Henry RE, Espinosa JM, Ren B. CBX3 regulates efficient RNA processing genomewide. Genome Res. 2012;22(8):1426-1436. doi: 10.1101/gr.124818.111
- Ruan J, Ouyang H, Amaya MF, et al. Structural basis of the chromodomain of Cbx3 bound to methylated peptides from histone H1 and G9a. PLoS One. 2012;7(4):e35376. doi: 10.1371/journal.pone.0035376
- Abe K, Naruse C, Kato T, Nishiuchi T, Saitou M, Asano M. Loss of heterochromatin protein 1 gamma reduces the number of primordial germ cells via impaired cell cycle progression in mice. Biol Reprod. 2011;85(5):1013-1024. doi: 10.1095/biolreprod.111.091512
- Liang YK, Lin HY, Chen CF, Zeng D. Prognostic values of distinct CBX family members in breast cancer. Oncotarget. 2017;8(54):92375-92387. doi: 10.18632/oncotarget.21325
- Wang Z, Potter CS, Sundberg JP, Hogenesch H. SHARPIN is a key regulator of immune and inflammatory responses. J Cell Mol Med. 2012;16(10):2271-2279. doi: 10.1111/j.1582-4934.2012.01574.x
- Tokunaga F, Iwai K. LUBAC, a novel ubiquitin ligase for linear ubiquitination, is crucial for inflammation and immune responses. Microbes Infect. 2012;14(7-8):563-572. doi: 10.1016/j.micinf.2012.01.011
- Kasirer-Friede A, Tjahjono W, Eto K, Shattil SJ. SHARPIN at the nexus of integrin, immune, and inflammatory signaling in human platelets. Proc Natl Acad Sci U S A. 2019;116(11):4983-4988. doi: 10.1073/pnas.1819156116
- McGowan HW, Schuijers JA, Grills BL, et al. Sharpin is a key regulator of skeletal homeostasis in a TNF dependent manner. J Musculoskelet Neuronal Interact. 2014;14(4):454-463.
- Zhuang T, Yu S, Zhang L, et al. SHARPIN stabilizes estrogen receptor alpha and promotes breast cancer cell proliferation. Oncotarget. 2017;8(44):77137-77151. doi: 10.18632/oncotarget.20368
- Yang H, Yu S, Wang W, et al. SHARPIN facilitates p53 degradation in breast cancer cells. Neoplasia. 2017;19(2):84-92. doi: 10.1016/j.neo.2016.12.002
- De Melo J, Tang D. Elevation of SIPL1 (SHARPIN) increases breast cancer risk. PLoS One. 2015;10(5):e0127546. doi: 10.1371/journal.pone.0127546
- Bii VM, Rae DT, Trobridge GD. A novel gammaretroviral shuttle vector insertional mutagenesis screen identifies SHARPIN as a breast cancer metastasis gene and prognostic biomarker. Oncotarget. 2015;6(37):39507-39520. doi: 10.18632/oncotarget.6232
- Kao KJ, Chang KM, Hsu HC, Huang AT. Correlation of microarray-based breast cancer molecular subtypes and clinical outcomes: Implications for treatment optimization. BMC Cancer. 2011;11:143. doi: 10.1186/1471-2407-11-143
- Bosco EE, Mulloy JC, Zheng Y. Rac1 GTPase: A “Rac” of all trades. Cell Mol Life Sci. 2009;66(3):370-394. doi: 10.1007/s00018-008-8552-x
- Schnelzer A, Prechtel D, Knaus U, et al. Rac1 in human breast cancer: Overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene. 2000;19(26):3013-3020. doi: 10.1038/sj.onc.1203621
- Bid HK, Roberts RD, Manchanda PK, Houghton PJ. RAC1: An emerging therapeutic option for targeting cancer angiogenesis and metastasis. Mol Cancer Ther. 2013;12(10):1925-1934. doi: 10.1158/1535-7163.MCT-13-0164
- Wetterskog D, Shiu KK, Chong I, et al. Identification of novel determinants of resistance to lapatinib in ERBB2-amplified cancers. Oncogene. 2014;33(8):966-976. doi: 10.1038/onc.2013.41
- Skvortsov S, Dudás J, Eichberger P, et al. Rac1 as a potential therapeutic target for chemoradioresistant head and neck squamous cell carcinomas. Br J Cancer. 2014;110(11):2677-2687. doi: 10.1038/bjc.2014.221
- Hein AL, Post CM, Sheinin YM, et al. RAC1 GTPase promotes the survival of breast cancer cells in response to hyperfractionated radiation treatment. Oncogene. 2016;35(49):6319-6329. doi: 10.1038/onc.2016.163
- Li FQ, Mofunanya A, Harris K, Takemaru KI. Chibby cooperates with 1433 to regulate βcatenin subcellular distribution and signaling activity. J Cell Biol. 2008;181(7):1141-1154. doi: 10.1083/jcb.200709091
- Wang W, Zhang L, Wang Y, et al. Involvement of miR451 in resistance to paclitaxel by regulating YWHAZ in breast cancer. Cell Death Dis. 2017;8(10):e3071. doi: 10.1038/cddis.2017.460
- Neal CL, Yao J, Yang WT, Zhou XY, Nguyen NT, Lu J. 1433ζ overexpression defines high risk for breast cancer recurrence and promotes cancer cell survival. Cancer Res. 2009;69(8):3425-3432. doi: 10.1158/0008-5472.CAN-08-2765
- Bergamaschi A, Katzenellenbogen BS. Tamoxifen downregulation of miR451 increases 1433ζ and promotes breast cancer cell survival and endocrine resistance. Oncogene. 2012;31(1):39-47. doi: 10.1038/onc.2011.223
- Fang Y, Shen H, Cao Y, et al. Involvement of miR30c in resistance to doxorubicin by regulating YWHAZ in breast cancer cells. Braz J Med Biol Res. 2014;47(1):60-69. doi: 10.1590/1414-431X20133324
- Xu W, Zhu H, Gu M, et al. DHTKD1 is essential for mitochondrial biogenesis and function maintenance. FEBS Lett. 2013;587(21):3587-3592. doi: 10.1016/j.febslet.2013.08.047
- Stark R, Roden M. ESCI award 2006. Mitochondrial function and endocrine diseases. Eur J Clin Invest. 2007;37(4):236-248. doi: 10.1111/j.1365-2362.2007.01773.x
- DiMauro S. A history of mitochondrial diseases. J Inherit Metab Dis. 2011;34(2):261-276. doi: 10.1007/s10545-010-9082-x
- Ježek P, PlecitáHlavatá L, Smolkova K, Rossignol R. Distinctions and similarities of cell bioenergetics and the role of mitochondria in hypoxia, cancer, and embryonic development. Int J Biochem Cell Biol. 2010;42(5):604-622. doi: 10.1016/j.biocel.2009.11.008
- Dong H, Zhang S, Wei Y, et al. Bioinformatic analysis of differential expression and core genes in breast cancer. Int J Clin Exp Pathol. 2018;11(3):1146-1156.
- Zhong X, Kan A, Zhang W, et al. CBX3/HP1γ promotes tumor proliferation and predicts poor survival in hepatocellular carcinoma. Aging (Albany NY). 2019;11(15):5483-5497. doi: 10.18632/aging.102132
