AccScience Publishing / EJMO / Online First / DOI: 10.36922/EJMO025190168
REVIEW ARTICLE

Understanding the molecular basis of radioresistance in lung cancer: A comprehensive review

Fatima Zohra Attouahri1,2 Boutaina Addoum1 Leila Benbacer1 Samira Mimount1 Bouchra El Mchichi3 Abdelhamid Barakat4 Hanane El Ouazzani5 Ismail Rhorfi5 Ahmed Abid5 Mouna Ababou2 Khalid Ennibi3 Khaoula Errafii6 Mohammed El Mzibri1*
Show Less
1 Department of Life Sciences, National Center for Nuclear Energy, Sciences and Techniques, Rabat, Morocco
2 Laboratory of Biodiversity, Ecology and Genome, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
3 Center of Virology, Infectious and Tropical Diseases, Mohammed V Military Teaching Hospital, Rabat, Morocco
4 Laboratory of Genetics, Department of Research, Psteur Institute of Morocco, Casablanca, Morocco
5 Department of Pneumology, Faculty of Medicine and Pharmacy, Mohamed V Military Teaching Hospital, Rabat, Morocco
6 African Genome Centre, Mohammed VI Polytechnic University, Benguerir, Rehamna, Morocco
Received: 7 May 2025 | Revised: 27 May 2025 | Accepted: 4 June 2025 | Published online: 17 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Lung cancer (LC) remains the most common malignancy in both genders and is the leading cause of cancer-related death worldwide. Despite significant advances in therapeutic approaches, radiotherapy (RT) continues to be one of the main approaches to LC treatment. However, radioresistance represents a major challenge to effective disease management and contributes significantly to treatment failure and poor prognosis. Radioresistance can be intrinsic, existing before treatment, or acquired during RT. It is a highly complex and multifactorial mechanism involving various cellular and molecular processes that are not yet fully understood. Key mechanisms contributing to radioresistance include enhanced DNA damage repair, cell cycle redistribution, inhibition of apoptosis, disruption of intracellular signaling pathways, interaction with the tumor microenvironment, autophagy-mediated survival, cancer stem cell-related resistance, and deregulation of non-coding ribonucleic acids. Understanding these pathways is essential for identifying new therapeutic targets and developing strategies to overcome resistance and improve patient outcomes. This review provides a comprehensive overview of the molecular mechanisms underlying radioresistance in LC.

Graphical abstract
Keywords
Lung cancer. Radiotherapy
Radioresistance
Funding
This paper has been prepared within the framework of the project funded by Mohammed VI Polytechnic University & OCP Foundation (TNI 2024 program).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263. doi: 10.3322/caac.21834

 

  1. Zheng M. Classification and pathology of lung cancer. Surg Oncol Clin N Am. 2016;25(3):447-468. doi: 10.1016/j.soc.2016.02.003

 

  1. Chen H, Stoltzfus KC, Lehrer EJ, et al. The epidemiology of lung metastases. Front Med (Lausanne). 2021;8:723396. doi: 10.3389/fmed.2021.723396

 

  1. Schuler M, Bölükbas S, Darwiche K, Theegarten D, Herrmann K, Stuschke M. Personalized treatment for patients with lung cancer. Dtsch Ärztebl Int. 2023;120(17):300-310. doi: 10.3238/arztebl.m2023.0012

 

  1. Wirsdörfer F, De Leve S, Jendrossek V. Combining radiotherapy and immunotherapy in lung cancer: Can we expect limitations due to altered normal tissue toxicity? Int J Mol Sci. 2019;20(1):24. doi: 10.3390/ijms20010024

 

  1. Kim BM, Hong Y, Lee S, et al. Therapeutic implications for overcoming radiation resistance in cancer therapy. Int J Mol Sci. 2015;16(11):26880-26913. doi: 10.3390/ijms161125991

 

  1. Wu Y, Song Y, Wang R, Wang T. Molecular mechanisms of tumor resistance to radiotherapy. Mol Cancer. 2023;22(1):96. doi: 10.1186/s12943-023-01801-2

 

  1. Su Y, Li T. Radioresistance via lipid metabolism: intrinsic, acquired, and tumor microenvironment. Precis Nutr. 2024;3(2):e00068. doi: 10.1097/PN9.0000000000000068

 

  1. Byrne NM, Tambe P, Coulter JA. Radiation response in the tumour microenvironment: Predictive biomarkers and future perspectives. J Pers Med. 2021;11(1):53. doi: 10.3390/jpm11010053

 

  1. Carlos-Reyes A, Muñiz-Lino MA, Romero-Garcia S, López-Camarillo C, Hernández-De La Cruz ON. Biological adaptations of tumor cells to radiation therapy. Front Oncol. 2021;11:718636. doi: 10.3389/fonc.2021.718636

 

  1. Alhaddad L, Osipov AN, Leonov S. The molecular and cellular strategies of glioblastoma and non-small-cell lung cancer cells conferring radioresistance. Int J Mol Sci. 2022;23(21):13577. doi: 10.3390/ijms232113577

 

  1. Yu Y, Yu J, Ge S, Su Y, Fan X. Novel insight into metabolic reprogrammming in cancer radioresistance: A promising therapeutic target in radiotherapy. Int J Biol Sci. 2023;19(3):811-828. doi: 10.7150/ijbs.79928

 

  1. Larionova I, Rakina M, Ivanyuk E, Trushchuk Y, Chernyshova A, Denisov E. Radiotherapy resistance: Identifying universal biomarkers for various human cancers. J Cancer Res Clin Oncol. 2022;148(5):1015-1031. doi: 10.1007/s00432-022-03923-4

 

  1. Al Sajwani A, Sherlock M. Radiotherapy. In: Llahana S, Follin C, Yedinak C, Grossman A, editors. Advanced Practice in Endocrinology Nursing. New York: Springer International Publishing; 2019. p. 447-468. doi: 10.1007/978-3-319-99817-6_24

 

  1. Havaki S, Kotsinas A, Chronopoulos E, Kletsas D, Georgakilas A, Gorgoulis VG. The role of oxidative DNA damage in radiation induced bystander effect. Cancer Lett. 2015;356(1):43-51. doi: 10.1016/j.canlet.2014.01.023

 

  1. Chen H, Han Z, Luo Q, et al. Radiotherapy modulates tumor cell fate decisions: A review. Radiat Oncol. 2022;17(1):196. doi: 10.1186/s13014-022-02171-7

 

  1. Mhamdi-Ghodbani M, Starzonek C, Degenhardt S, et al. UVB damage response of dermal stem cells as melanocyte precursors compared to keratinocytes, melanocytes, and fibroblasts from human foreskin. J Photochem Photobiol B. 2021;220:112216. doi: 10.1016/j.jphotobiol.2021.112216

 

  1. Deloch L, Derer A, Hartmann J, Frey B, Fietkau R, Gaipl US. Modern radiotherapy concepts and the impact of radiation on immune activation. Front Oncol. 2016;6:141. doi: 10.3389/fonc.2016.00141

 

  1. Mendes F, Domingues C, Rodrigues-Santos P, et al. The role of immune system exhaustion on cancer cell escape and anti-tumor immune induction after irradiation. Biochim Biophys Acta BBA Rev Cancer. 2016;1865(2):168-175. doi: 10.1016/j.bbcan.2016.02.002

 

  1. Tormoen GW, Crittenden MR, Gough MJ. Role of the immunosuppressive microenvironment in immunotherapy. Adv Radiat Oncol. 2018;3(4):520-526. doi: 10.1016/j.adro.2018.08.018

 

  1. Liu S, Wang W, Hu S, et al. Radiotherapy remodels the tumor microenvironment for enhancing immunotherapeutic sensitivity. Cell Death Dis. 2023;14(10):679. doi: 10.1038/s41419-023-06211-2

 

  1. Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther. 2020;5:60. doi: 10.1038/s41392-020-0150-x

 

  1. Lomax ME, Folkes LK, O’Neill P. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol (R Coll Radiol). 2013;25(10):578-585. doi: 10.1016/j.clon.2013.06.007

 

  1. Chalmers AJ, Carruthers RD. Radiobiology summaries: DNA damage and repair. Clin Oncol. 2021;33(5):275-278. doi: 10.1016/j.clon.2020.12.006

 

  1. Zhou T, Zhang LY, He JZ, et al. Review: Mechanisms and perspective treatment of radioresistance in non-small cell lung cancer. Front Immunol. 2023;14:1133899. doi: 10.3389/fimmu.2023.1133899

 

  1. Burgess JT, Rose M, Boucher D, et al. The therapeutic potential of DNA damage repair pathways and genomic stability in lung cancer. Front Oncol. 2020;10:1256. doi: 10.3389/fonc.2020.01256

 

  1. Kara A, Özgür A, Nalbantoğlu S, Karadağ A. DNA repair pathways and their roles in drug resistance for lung adenocarcinoma. Mol Biol Rep. 2021;48(4):3813-3825. doi: 10.1007/s11033-021-06314-z

 

  1. Laird JH, Lok BH, Ma J, et al. Talazoparib is a potent radiosensitizer in small cell lung cancer cell lines and xenografts. Clin Cancer Res. 2018;24(20):5143-5152. doi: 10.1158/1078-0432.CCR-18-0401

 

  1. Bian X, Lin W. Targeting DNA replication stress and DNA double-strand break repair for optimizing SCLC treatment. Cancers. 2019;11(9):1289. doi: 10.3390/cancers11091289

 

  1. Syed A, Tainer JA. The MRE11-RAD50-NBS1 complex conducts the orchestration of damage signaling and outcomes to stress in DNA replication and repair. Annu Rev Biochem. 2018;87:263-294. doi: 10.1146/annurev-biochem-062917-012415

 

  1. Zou N, Xie G, Cui T, et al. DDB2 increases radioresistance of NSCLC cells by enhancing DNA damage responses. Tumour Biol. 2016;37(10):14183-14191. doi: 10.1007/s13277-016-5203-y

 

  1. Jiang W, Jin G, Cai F, et al. Extracellular signal-regulated kinase 5 increases radioresistance of lung cancer cells by enhancing the DNA damage response. Exp Mol Med. 2019;51(2):1-20.doi: 10.1038/s12276-019-0209-3

 

  1. Zhang J, Wu Q, Zhu L, et al. SERPINE2/PN-1 regulates the DNA damage response and radioresistance by activating ATM in lung cancer. Cancer Lett. 2022;524:268-283. doi: 10.1016/j.canlet.2021.10.001

 

  1. Tiwari V, Wilson DM. DNA damage and associated DNA repair defects in disease and premature aging. Am J Hum Genet. 2019;105(2):237-257. doi: 10.1016/j.ajhg.2019.06.005

 

  1. Wang Q, Goldstein M, Alexander P, et al. Rad17 recruits the MRE11-RAD50-NBS1 complex to regulate the cellular response to DNA double-strand breaks. EMBO J. 2014;33(8):862-877. doi: 10.1002/embj.201386064

 

  1. Williams RM, Zhang X. Roles of ATM and ATR in DNA double strand breaks and replication stress. Prog Biophys Mol Biol. 2021;163:109-119. doi: 10.1016/j.pbiomolbio.2021.03.007

 

  1. Reczek CR, Shakya R, Miteva Y, Szabolcs M, Ludwig T, Baer R. The DNA resection protein CtIP promotes mammary tumorigenesis. Oncotarget. 2016;7(22):32172-32183. doi: 10.18632/oncotarget.8605

 

  1. Manfrini N, Trovesi C, Wery M, et al. RNA-processing proteins regulate Mec1/ATR activation by promoting generation of RPA-coated ssDNA. EMBO Rep. 2015;16(2):221-231. doi: 10.15252/embr.201439458

 

  1. Berthel E, Foray N, Ferlazzo ML. The nucleoshuttling of the ATM protein: A unified model to describe the individual response to high- and low-dose of radiation? Cancers. 2019;11(7):905. doi: 10.3390/cancers11070905

 

  1. Sadoughi F, Mirsafaei L, Dana PM, et al. The role of DNA damage response in chemo- and radio-resistance of cancer cells: Can DDR inhibitors sole the problem? DNA Repair. 2021;101:103074. doi: 10.1016/j.dnarep.2021.103074

 

  1. Li H, Ma L, Bian X, Lv Y, Lin W. FK228 sensitizes radioresistant small cell lung cancer cells to radiation. Clin Epigen. 2021;13(1):41. doi: 10.1186/s13148-021-01025-5

 

  1. Chen X, Qian D, Cheng J, et al. High expression of Rad51c predicts poor prognostic outcome and induces cell resistance to cisplatin and radiation in non-small cell lung cancer. Tumour Biol. 2016;37(10):13489-13498. doi: 10.1007/s13277-016-5192-x

 

  1. Hsu PC, Gopinath RK, Hsueh YA, Shieh SY. CHK2- mediated regulation of PARP1 in oxidative DNA damage response. Oncogene. 2019;38(8):1166-1182. doi: 10.1038/s41388-018-0506-7

 

  1. Mustofa MK, Tanoue Y, Tateishi C, Vaziri C, Tateishi S. Roles of chk2/CHEK2 in guarding against environmentally induced DNA damage and replication-stress. Environ Mol Mutagen. 2020;61(7):730-735. doi: 10.1002/em.22397

 

  1. Jie X, Fong WP, Zhou R, et al. USP9X-mediated KDM4C deubiquitination promotes lung cancer radioresistance by epigenetically inducing TGF-β2 transcription. Cell Death Differ. 2021;28(7):2095-2111. doi: 10.1038/s41418-021-00740-z

 

  1. Wu J, Chen Y, Geng G, et al. USP39 regulates DNA damage response and chemo-radiation resistance by deubiquitinating and stabilizing CHK2. Cancer Lett. 2019;449:114-124. doi: 10.1016/j.canlet.2019.02.015

 

  1. Cao K, Chen Y, Zhao S, et al. Sirt3 promoted DNA damage repair and radioresistance through ATM-Chk2 in non-small cell lung cancer cells. J Cancer. 2021;12(18):5464-5472. doi: 10.7150/jca.53173

 

  1. Zeng Y, Jie X, Wu B, Wu G, Liu L, Xu S. IQGAP3 interacts with rad17 to recruit the mre11-rad50-nbs1 complex and contributes to radioresistance in lung cancer. Cancer Lett. 2020;493:254-265. doi: 10.1016/j.canlet.2020.08.042

 

  1. Hanscom T, McVey M. Regulation of error-prone DNA double-strand break repair and its impact on genome evolution. Cells. 2020;9(7):1657. doi: 10.3390/cells9071657

 

  1. Mahaney BL, Meek K, Lees-Miller SP. Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J. 2009;417(3):639-650. doi: 10.1042/BJ20080413

 

  1. Li Y, Li H, Peng W, et al. DNA-dependent protein kinase catalytic subunit inhibitor reverses acquired radioresistance in lung adenocarcinoma by suppressing DNA repair. Mol Med Rep. 2015;12(1):1328-1334. doi: 10.3892/mmr.2015.3505

 

  1. Cheng C, Pei X, Li SW, et al. CRISPR/Cas9 library screening uncovered methylated PKP2 as a critical driver of lung cancer radioresistance by stabilizing β-catenin. Oncogene. 2021;40(16):2842-2857. doi: 10.1038/s41388-021-01692-x

 

  1. Yang X, Wang G, You J, et al. High expression of cancer-igg is associated with poor prognosis and radioresistance via pi3k/ akt/dna-pkcs pathway regulation in lung adenocarcinoma. Front Oncol. 2021;11:675397. doi: 10.3389/fonc.2021.675397

 

  1. Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer. 2017;17(2):93-115. doi: 10.1038/nrc.2016.138

 

  1. Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys. 2004;59(4):928-942. doi: 10.1016/j.ijrobp.2004.03.005

 

  1. Medema RH, Macůrek L. Checkpoint control and cancer. Oncogene. 2012;31(21):2601-2613. doi: 10.1038/onc.2011.451

 

  1. Zhao Y, Cui Y, Han J, Ren J, Wu G, Cheng J. Cell division cycle 25 homolog c effects on low-dose hyper-radiosensitivity and induced radioresistance at elevated dosage in A549 cells. J Radiat Res (Tokyo). 2012;53(5):686-694. doi: 10.1093/jrr/rrs024

 

  1. Raghavan P, Tumati V, Yu L, et al. AZD5438, an inhibitor of cdk1, 2, and 9, enhances the radiosensitivity of non-small cell lung carcinoma cells. Int J Radiat Oncol Biol Phys. 2012;84(4):e507-e514. doi: 10.1016/j.ijrobp.2012.05.035

 

  1. Lei X, Du L, Zhang P, et al. Knockdown GTSE1 enhances radiosensitivity in non-small-cell lung cancer through DNA damage repair pathway. J Cell Mol Med. 2020;24(9):5162- 5167. doi: 10.1111/jcmm.15165

 

  1. Yao G, Tang J, Yang X, et al. Cyclin k interacts with β-catenin to induce cyclin d1 expression and facilitates tumorigenesis and radioresistance in lung cancer. Theranostics. 2020;10(24):11144-11158. doi: 10.7150/thno.42578

 

  1. Cao R, Ding Q, Li P, et al. Shp1-mediated cell cycle redistribution inhibits radiosensitivity of non-small cell lung cancer. Radiat Oncol. 2013;8:178. doi: 10.1186/1748-717X-8-178

 

  1. Wang Y, Hu L, Zhang X, et al. Downregulation of mitochondrial single stranded DNA binding protein (SSBP1) induces mitochondrial dysfunction and increases the radiosensitivity in non-small cell lung cancer cells. J Cancer. 2017;8(8):1400-1409. doi: 10.7150/jca.18170

 

  1. Li L, Li Y, Zou H. A novel role for apatinib in enhancing radiosensitivity in non-small cell lung cancer cells by suppressing the AKT and ERK pathways. PeerJ. 2021;9:e12356. doi: 10.7717/peerj.12356

 

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011;144(5):646-674. doi: 10.1016/j.cell.2011.02.013

 

  1. Ritter V, Krautter F, Klein D, Jendrossek V, Rudner J. Bcl-2/ Bcl-xL inhibitor ABT-263 overcomes hypoxia-driven radioresistence and improves radiotherapy. Cell Death Dis. 2021;12(7):694. doi: 10.1038/s41419-021-03971-7

 

  1. Tao Z, Chen S, Mao G, Xia H, Huang H, Ma H. The PDRG1 is an oncogene in lung cancer cells, promoting radioresistance via the ATM-P53 signaling pathway. Biomed Pharmacother. 2016;83:1471-1477. doi: 10.1016/j.biopha.2016.08.034

 

  1. Zhao RS, Wang W, Li JP, Liu CM, He L. Gelsolin promotes radioresistance in non-small cell lung cancer cells through activation of phosphoinositide 3-kinase/akt signaling. Technol Cancer Res Treat. 2017;16(4):512-518. doi: 10.1177/1533034616643884

 

  1. McLaughlin KA, Nemeth Z, Bradley CA, et al. FLIP: A targetable mediator of resistance to radiation in non-small cell lung cancer. Mol Cancer Ther. 2016;15(10):2432-2441. doi: 10.1158/1535-7163.MCT-16-0211

 

  1. Bouleftour W, Rowinski E, Louati S, et al. A review of the role of hypoxia in radioresistance in cancer therapy. Med Sci Monit. 2021;27:e934116. doi: 10.12659/MSM.934116

 

  1. Ma Y, Pitt JM, Li Q, Yang H. The renaissance of anti-neoplastic immunity from tumor cell demise. Immunol Rev. 2017;280(1):194-206. doi: 10.1111/imr.12586

 

  1. Jarosz-Biej M, Smolarczyk R, Cichoń T, Kułach N. Tumor microenvironment as a “game changer” in cancer radiotherapy. Int J Mol Sci. 2019;20(13):3212. doi: 10.3390/ijms20133212

 

  1. Lee CT, Boss MK, Dewhirst MW. Imaging tumor hypoxia to advance radiation oncology. Antioxid Redox Signal. 2014;21(2):313-337. doi: 10.1089/ars.2013.5759

 

  1. Chen F, Xu B, Li J, et al. Hypoxic tumour cell-derived exosomal miR-340-5p promotes radioresistance of oesophageal squamous cell carcinoma via KLF10. J Exp Clin Cancer Res CR. 2021;40(1):38. doi: 10.1186/s13046-021-01834-9

 

  1. Chota A, George BP, Abrahamse H. Interactions of multidomain pro-apoptotic and anti-apoptotic proteins in cancer cell death. Oncotarget. 2021;12(16):1615-1626. doi: 10.18632/oncotarget.28031

 

  1. Adjemian S, Oltean T, Martens S, et al. Ionizing radiation results in a mixture of cellular outcomes including mitotic catastrophe, senescence, methuosis, and iron-dependent cell death. Cell Death Dis. 2020;11(11):1003.doi: 10.1038/s41419-020-03209-y

 

  1. Willers H, Held KD. Introduction to clinical radiation biology. Hematol Oncol Clin North Am. 2006;20(1):1-24. doi: 10.1016/j.hoc.2006.01.007

 

  1. Zou YM, Hu GY, Zhao XQ, et al. Hypoxia-induced autophagy contributes to radioresistance via c-jun-mediated beclin1 expression in lung cancer cells. J Huazhong Univ Sci Technolog Med Sci. 2014;34(5):761-767. doi: 10.1007/s11596-014-1349-2

 

  1. Harada H, Itasaka S, Zhu Y, et al. Treatment regimen determines whether an HIF-1 inhibitor enhances or inhibits the effect of radiation therapy. Br J Cancer. 2009;100(5):747-757. doi: 10.1038/sj.bjc.6604939

 

  1. Meijer TWH, Kaanders JHAM, Span PN, Bussink J. Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clin Cancer Res. 2012;18(20):5585-5594. doi: 10.1158/1078-0432.CCR-12-0858

 

  1. Huang R, Zhou PK. HIF-1 signaling: A key orchestrator of cancer radioresistance. Radiat Med Prot. 2020;1(1):7-14. doi: 10.1016/j.radmp.2020.01.006

 

  1. Zhu H, Zhang S. Hypoxia inducible factor-1α/vascular endothelial growth factor signaling activation correlates with response to radiotherapy and its inhibition reduces hypoxia-induced angiogenesis in lung cancer. J Cell Biochem. 2018;119(9):7707-7718. doi: 10.1002/jcb.27120

 

  1. Grosso S, Doyen J, Parks SK, et al. MiR-210 promotes a hypoxic phenotype and increases radioresistance in human lung cancer cell lines. Cell Death Dis. 2013;4(3):e544. doi: 10.1038/cddis.2013.71

 

  1. Chen S, Yin C, Lao T, et al. AMPK-HDAC5 pathway facilitates nuclear accumulation of HIF-1α and functional activation of HIF-1 by deacetylating hsp70 in the cytosol. Cell Cycle Georget Tex. 2015;14(15):2520-2536. doi: 10.1080/15384101.2015.1055426

 

  1. Hartmann S, Günther N, Biehl M, et al. Hsp90 inhibition by nvp-auy922 and nvp-bep800 decreases migration and invasion of irradiated normoxic and hypoxic tumor cell lines. Cancer Lett. 2013;331(2):200-210. doi: 10.1016/j.canlet.2012.12.027

 

  1. Gu Q, He Y, Ji J, et al. Hypoxia-inducible factor 1α (hif-1α) and reactive oxygen species (ROS) mediates radiation-induced invasiveness through the sdf-1α/cxcr4 pathway in non-small cell lung carcinoma cells. Oncotarget. 2015;6(13):10893-10907. doi: 10.18632/oncotarget.3535

 

  1. Chen X, Song E. Turning foes to friends: Targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 2019;18(2):99-115. doi: 10.1038/s41573-018-0004-1

 

  1. Asif PJ, Longobardi C, Hahne M, Medema JP. The role of cancer-associated fibroblasts in cancer invasion and metastasis. Cancers. 2021;13(18):4720. doi: 10.3390/cancers13184720

 

  1. Ji X, Ji J, Shan F, Zhang Y, Chen Y, Lu X. Cancer-associated fibroblasts from NSCLC promote the radioresistance in lung cancer cell lines. Int J Clin Exp Med. 2015;8(5):7002-7008.

 

  1. Chu TY, Yang JT, Huang TH, Liu HW. Crosstalk with cancer-associated fibroblasts increases the growth and radiation survival of cervical cancer cells. Radiat Res. 2014;181(5):540-547. doi: 10.1667/RR13583.1

 

  1. Wang Y, Gan G, Wang B, et al. Cancer-associated fibroblasts promote irradiated cancer cell recovery through autophagy. EBioMedicine. 2017;17:45-56. doi: 10.1016/j.ebiom.2017.02.019

 

  1. Meng J, Li Y, Wan C, et al. Targeting senescence-like fibroblasts radiosensitizes non-small cell lung cancer and reduces radiation-induced pulmonary fibrosis. JCI Insight. 2021;6(23):e146334. doi: 10.1172/jci.insight.146334

 

  1. Hellevik T, Pettersen I, Berg V, et al. Changes in the secretory profile of NSCLC-associated fibroblasts after ablative radiotherapy: Potential impact on angiogenesis and tumor growth. Transl Oncol. 2013;6(1):66-74. doi: 10.1593/tlo.12349

 

  1. Ansems M, Span PN. The tumor microenvironment and radiotherapy response; a central role for cancer-associated fibroblasts. Clin Transl Radiat Oncol. 2020;22:90-97. doi: 10.1016/j.ctro.2020.04.001

 

  1. Deng L, Liang H, Burnette B, et al. Irradiation and anti- PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest. 2014;124(2):687-695. doi: 10.1172/JCI67313

 

  1. Simone CB, Burri SH, Heinzerling JH. Novel radiotherapy approaches for lung cancer: Combining radiation therapy with targeted and immunotherapies. Transl Lung Cancer Res. 2015;4(5):545-552. doi: 10.3978/j.issn.2218-6751.2015.10.05

 

  1. Gong X, Li X, Jiang T, et al. Combined radiotherapy and Anti-PD-L1 antibody synergistically enhances antitumor effect in non-small cell lung cancer. J Thorac Oncol. 2017;12(7):1085-1097. doi: 10.1016/j.jtho.2017.04.014

 

  1. Domogalla MP, Rostan PV, Raker VK, Steinbrink K. Tolerance through education: How tolerogenic dendritic cells shape immunity. Front Immunol. 2017;8:1767. doi: 10.3389/fimmu.2017.01764

 

  1. Lippitz BE, Harris RA. A translational concept of immuno-radiobiology. Radiother Oncol. 2019;140:116-124. doi: 10.1016/j.radonc.2019.06.001

 

  1. Rybkina VL, Bannikova MV, Adamova GV, Dörr H, Scherthan H, Azizova TV. Immunological markers of chronic occupational radiation exposure. Health Phys. 2018;115(1):108-113. doi: 10.1097/HP.0000000000000855

 

  1. Lu Y, Ma J, Li Y, et al. CDP138 silencing inhibits TGF-β/ smad signaling to impair radioresistance and metastasis via GDF15 in lung cancer. Cell Death Dis. 2017;8(9):e3036. doi: 10.1038/cddis.2017.434

 

  1. Shinde-Jadhav S, Mansure JJ, Rayes RF, et al. Role of neutrophil extracellular traps in radiation resistance of invasive bladder cancer. Nat Commun. 2021;12(1):2776. doi: 10.1038/s41467-021-23086-z

 

  1. Piao C, Zhang WM, Li TT, et al. Complement 5a stimulates macrophage polarization and contributes to tumor metastases of colon cancer. Exp Cell Res. 2018;366(2):127-138. doi: 10.1016/j.yexcr.2018.03.009

 

  1. Ajona D, Ortiz-Espinosa S, Moreno H, et al. A combined PD-1/C5a blockade synergistically protects against lung cancer growth and metastasis. Cancer Discov. 2017;7(7):694-703. doi: 10.1158/2159-8290.CD-16-1184

 

  1. Yuan M, Wang C, Wu Y, et al. Targeting complement C5a to improve radiotherapy sensitivity in non-small cell lung cancer. Transl Lung Cancer Res. 2023;12(5):1093-1107. doi: 10.21037/tlcr-23-258

 

  1. Liu S, Imani S, Deng Y, et al. Targeting IFN/STAT1 pathway as a promising strategy to overcome radioresistance. Onco Targets Ther. 2020;13:6037-6050. doi: 10.2147/OTT.S256708

 

  1. Zhang F, Manna S, Pop LM, Chen ZJ, Fu YX, Hannan R. Type i interferon response in radiation-induced anti-tumor immunity. Semin Radiat Oncol. 2020;30(2):129-138. doi: 10.1016/j.semradonc.2019.12.009

 

  1. Cheon H, Holvey-Bates EG, Schoggins JW, et al. IFNβ- dependent increases in STAT1, STAT2, and IRF9 mediate resistance to viruses and DNA damage. EMBO J. 2013;32(20):2751. doi: 10.1038/emboj.2013.203

 

  1. Minn AJ. Interferons and the immunogenic effects of cancer therapy. Trends Immunol. 2015;36(11):725-737. doi: 10.1016/j.it.2015.09.007

 

  1. Pitroda SP, Stack ME, Liu GF, et al. JAK2 inhibitor SAR302503 abrogates PD-L1 expression and targets therapy-resistant non-small cell lung cancers. Mol Cancer Ther. 2018;17(4):732-739. doi: 10.1158/1535-7163.MCT-17-0667

 

  1. Yang Y, Zheng X, Ni P, et al. Targeting the STAT5A/ IDO1 axis overcomes radioresistance and reverses the immunosuppressive tumor microenvironment in NSCLC. Int J Oncol. 2023;62(1):12. doi: 10.3892/ijo.2022.5460

 

  1. Najafi M, Mortezaee K, Majidpoor J. Cancer stem cell (CSC) resistance drivers. Life Sci. 2019;234:116781. doi: 10.1016/j.lfs.2019.116781

 

  1. Arnold CR, Mangesius J, Skvortsova II, Ganswindt U. The role of cancer stem cells in radiation resistance. Front Oncol. 2020;10:164. doi: 10.3389/fonc.2020.00164

 

  1. Desai A, Webb B, Gerson SL. CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells. Radiother Oncol. 2014;110(3):538-545. doi: 10.1016/j.radonc.2013.10.040

 

  1. Jeong Y, Hoang NT, Lovejoy A, et al. Role of KEAP1/NRF2 and TP53 mutations in lung squamous cell carcinoma development and radiation resistance. Cancer Discov. 2017;7(1):86-101. doi: 10.1158/2159-8290.CD-16-0127

 

  1. Tsolou A, Lamprou I, Fortosi AO, Liousia M, Giatromanolaki A, Koukourakis MI. “Stemness” and “Senescence” related escape pathways are dose dependent in lung cancer cells surviving post irradiation. Life Sci. 2019;232:116562. doi: 10.1016/j.lfs.2019.116562

 

  1. Wang S, Li Z, Li P, et al. SOX2 promotes radioresistance in non-small cell lung cancer by regulating tumor cells dedifferentiation. Int J Med Sci. 2023;20(6):781-796. doi: 10.7150/ijms.75315

 

  1. Tan B, Zhang J, Wang W, Ma H, Yang Y. E3 ubiquitin ligase CHIP inhibits the interaction between Hsp90β and MAST1 to repress radiation resistance in non-small-Cell lung cancer stem cells. Stem Cells Int. 2022;2022:2760899. doi: 10.1155/2022/2760899

 

  1. Sun JC, He F, Yi W, et al. High expression of HIF-2α and its anti-radiotherapy effect in lung cancer stem cells. Genet Mol Res GMR. 2015;14(4):18110-18120. doi: 10.4238/2015.December.22.37

 

  1. Patel NH, Sohal SS, Manjili MH, Harrell JC, Gewirtz DA. The roles of autophagy and senescence in the tumor cell response to radiation. Radiat Res. 2020;194(2):103-115. doi: 10.1667/RADE-20-00009

 

  1. Chen X, Yan YL, Zeng SS, Gong ZC, Xu ZJ. Caveolin-1 promotes radioresistance via IRGM-regulated autophagy in lung cancer. Ann Transl Med. 2021;9(1):47. doi: 10.21037/atm-20-3293

 

  1. Wen J, Zheng W, Zeng L, et al. LTF induces radioresistance by promoting autophagy and forms an AMPK/SP2/NEAT1/ miR-214-5p feedback loop in lung squamous cell carcinoma. Int J Biol Sci. 2023;19(5):1509-1527. doi: 10.7150/ijbs.78669

 

  1. Gao J, Lu F, Yan J, et al. The role of radiotherapy-related autophagy genes in the prognosis and immune infiltration in lung adenocarcinoma. Front Immunol. 2022;13:992626. doi: 10.3389/fimmu.2022.992626

 

  1. Chen X, He Q, Zeng S, Xu Z. Upregulation of nuclear division cycle 80 contributes to therapeutic resistance via the promotion of autophagy-related protein-7-dependent autophagy in lung cancer. Front Pharmacol. 2022;13:985601. doi: 10.3389/fphar.2022.985601

 

  1. Martínez-Reyes I, Chandel NS. Cancer metabolism: Looking forward. Nat Rev Cancer. 2021;21(10):669-680. doi: 10.1038/s41568-021-00378-6

 

  1. Zhao H, Li Y. Cancer metabolism and intervention therapy. Mol Biomed. 2021;2(1):5. doi: 10.1186/s43556-020-00012-1

 

  1. Chen Y, Li Y, Huang L, et al. Antioxidative stress: Inhibiting reactive oxygen species production as a cause of radioresistance and chemoresistance. Oxid Med Cell Longev. 2021;2021:6620306. doi: 10.1155/2021/6620306

 

  1. Yoshida GJ. Metabolic reprogramming: The emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res CR. 2015;34:111. doi: 10.1186/s13046-015-0221-y

 

  1. Zhang Y, Li Q, Huang Z, et al. Targeting glucose metabolism enzymes in cancer treatment: Current and emerging strategies. Cancers. 2022;14(19):4568. doi: 10.3390/cancers14194568

 

  1. Shao Y, Wellman TL, Lounsbury KM, Zhao FQ. Differential regulation of GLUT1 and GLUT8 expression by hypoxia in mammary epithelial cells. Am J Physiol Regul Integr Comp Physiol. 2014;307(3):R237-R247. doi: 10.1152/ajpregu.00093.2014

 

  1. Wu W, Hu Z, Zhao Q, et al. Down-regulation of hypoxia-inducible factor-1α and downstream glucose transporter protein-1 gene by β-elemene enhancing the radiosensitivity of lung adenocarcinoma transplanted tumor. Onco Targets Ther. 2020;13:11627-11635. doi: 10.2147/OTT.S275956

 

  1. Chhipa AS, Patel S. Targeting pyruvate kinase muscle isoform 2 (PKM2) in cancer: What do we know so far? Life Sci. 2021;280:119694. doi: 10.1016/j.lfs.2021.119694

 

  1. Meng MB, Wang HH, Guo WH, et al. Targeting pyruvate kinase M2 contributes to radiosensitivity of non-small cell lung cancer cells in vitro and in vivo. Cancer Lett. 2015;356(2 Pt B):985-993. doi: 10.1016/j.canlet.2014.11.016

 

  1. Yang Y, Chong Y, Chen M, et al. Targeting lactate dehydrogenase a improves radiotherapy efficacy in non-small cell lung cancer: From bedside to bench. J Transl Med. 2021;19(1):170. doi: 10.1186/s12967-021-02825-2

 

  1. Yang X, Lu Y, Hang J, et al. Lactate-modulated immunosuppression of myeloid-derived suppressor cells contributes to the radioresistance of pancreatic cancer. Cancer Immunol Res. 2020;8(11):1440-1451. doi: 10.1158/2326-6066.CIR-20-0111

 

  1. Bola BM, Chadwick AL, Michopoulos F, et al. Inhibition of monocarboxylate transporter-1 (MCT1) by AZD3965 enhances radiosensitivity by reducing lactate transport. Mol Cancer Ther. 2014;13(12):2805-2816. doi: 10.1158/1535-7163.MCT-13-1091

 

  1. Liu R, Li W, Tao B, et al. Tyrosine phosphorylation activates 6-phosphogluconate dehydrogenase and promotes tumor growth and radiation resistance. Nat Commun. 2019;10(1):991. doi: 10.1038/s41467-019-08921-8

 

  1. Shan C, Elf S, Ji Q, et al. Lysine acetylation activates 6-phosphogluconate dehydrogenase to promote tumor growth. Mol Cell. 2014;55(4):552-565. doi: 10.1016/j.molcel.2014.06.020

 

  1. Boysen G, Jamshidi-Parsian A, Davis MA, et al. Glutaminase inhibitor CB-839 increases radiation sensitivity of lung tumor cells and human lung tumor xenografts in mice. Int J Radiat Biol. 2019;95(4):436-442. doi: 10.1080/09553002.2018.1558299

 

  1. Sappington DR, Siegel ER, Hiatt G, et al. Glutamine drives glutathione synthesis and contributes to radiation sensitivity of A549 and H460 lung cancer cell lines. Biochim Biophys Acta. 2016;1860(4):836-843. doi: 10.1016/j.bbagen.2016.01.021

 

  1. Harjes U, Kalucka J, Carmeliet P. Targeting fatty acid metabolism in cancer and endothelial cells. Crit Rev Oncol Hematol. 2016;97:15-21. doi: 10.1016/j.critrevonc.2015.10.011

 

  1. Matschke J, Wiebeck E, Hurst S, Rudner J, Jendrossek V. Role of SGK1 for fatty acid uptake, cell survival and radioresistance of NCI-H460 lung cancer cells exposed to acute or chronic cycling severe hypoxia. Radiat Oncol. 2016;11:75. doi: 10.1186/s13014-016-0647-1

 

  1. Koizume S, Miyagi Y. Lipid droplets: A key cellular organelle associated with cancer cell survival under normoxia and hypoxia. Int J Mol Sci. 2016;17(9):1430. doi: 10.3390/ijms17091430

 

  1. Tirinato L, Marafioti MG, Pagliari F, et al. Lipid droplets and ferritin heavy chain: A devilish liaison in human cancer cell radioresistance. eLife. 2021;10:e72943. doi: 10.7554/eLife.72943

 

  1. Yan Y, Su W, Zeng S, et al. Effect and mechanism of tanshinone i on the radiosensitivity of lung cancer cells. Mol Pharm. 2018;15(11):4843-4853. doi: 10.1021/acs.molpharmaceut.8b00489

 

  1. Teng F, Fussenegger M. Shedding light on extracellular vesicle biogenesis and bioengineering. Adv Sci (Weinh). 2020;8(1):2003505. doi: 10.1002/advs.202003505

 

  1. Ni J, Bucci J, Malouf D, Knox M, Graham P, Li Y. Exosomes in cancer radioresistance. Front Oncol. 2019;9:869. doi: 10.3389/fonc.2019.00869

 

  1. Xu S, Wang J, Ding N, et al. Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect. RNA Biol. 2015;12(12):1355-1363. doi: 10.1080/15476286.2015.1100795

 

  1. He C, Li L, Wang L, Meng W, Hao Y, Zhu G. Exosome-mediated cellular crosstalk within the tumor microenvironment upon irradiation. Cancer Biol Med. 2021;18(1):21-33. doi: 10.20892/j.issn.2095-3941.2020.0150

 

  1. May JM, Bylicky M, Chopra S, Coleman CN, Aryankalayil MJ. Long and short non-coding RNA and radiation response: A review. Transl Res. 2021;233:162-179. doi: 10.1016/j.trsl.2021.02.005

 

  1. Malla B, Zaugg K, Vassella E, Aebersold DM, Dal Pra A. Exosomes and exosomal micrornas in prostate cancer radiation therapy. Int J Radiat Oncol. 2017;98(5):982-995. doi: 10.1016/j.ijrobp.2017.03.031

 

  1. Tang Y, Cui Y, Li Z, et al. Radiation-induced miR-208a increases the proliferation and radioresistance by targeting p21 in human lung cancer cells. J Exp Clin Cancer Res. 2016;35(1):7. doi: 10.1186/s13046-016-0285-3

 

  1. Zheng Y, Liu L, Chen C, et al. The extracellular vesicles secreted by lung cancer cells in radiation therapy promote endothelial cell angiogenesis by transferring miR-23a. PeerJ. 2017;5:e3627. doi: 10.7717/peerj.3627

 

  1. Wang C, Xu J, Yuan D, et al. Exosomes carrying ALDOA and ALDH3A1 from irradiated lung cancer cells enhance migration and invasion of recipients by accelerating glycolysis. Mol Cell Biochem. 2020;469(1-2):77-87. doi: 10.1007/s11010-020-03729-3

 

  1. Ma W, Ma CN, Zhou NN, Li XD, Zhang YJ. Up- regulation of miR-328-3p sensitizes non-small cell lung cancer to radiotherapy. Sci Rep. 2016;6:31651. doi: 10.1038/srep31651

 

  1. Li Y, Han W, Ni TT, et al. Knockdown of microRNA-1323 restores sensitivity to radiation by suppression of PRKDC activity in radiation-resistant lung cancer cells. Oncol Rep. 2015;33(6):2821-2828. doi: 10.3892/or.2015.3884

 

  1. Guo Y, Sun W, Gong T, et al. miR-30a radiosensitizes non-small cell lung cancer by targeting ATF1 that is involved in the phosphorylation of ATM. Oncol Rep. 2017;37(4):1980-1988. doi: 10.3892/or.2017.5448

 

  1. Du R, Jiang F, Yin Y, et al. Knockdown of lncRNA X inactive specific transcript (XIST) radiosensitizes non-small cell lung cancer (NSCLC) cells through regulation of miR- 16-5p/WEE1 G2 checkpoint kinase (WEE1) axis. Int J Immunopathol Pharmacol. 2021;35. doi: 10.1177/2058738420966087

 

  1. Liu Q, Fu H, Sun F, et al. miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res. 2008;36(16):5391-5404. doi: 10.1093/nar/gkn522

 

  1. He Z, Liu Y, Xiao B, Qian X. miR-25 modulates NSCLC cell radio-sensitivity through directly inhibiting BTG2 expression. Biochem Biophys Res Commun. 2015;457(3):235-241. doi: 10.1016/j.bbrc.2014.12.094

 

  1. Ma W, Ma CN, Li XD, Zhang YJ. Examining the effect of gene reduction in miR-95 and enhanced radiosensitivity in non-small cell lung cancer. Cancer Gene Ther. 2016;23(2-3):66-71. doi: 10.1038/cgt.2016.2

 

  1. Zhang J, Zhang C, Hu L, et al. Abnormal expression of miR-21 and miR-95 in cancer stem-like cells is associated with radioresistance of lung cancer. Cancer Invest. 2015;33(5):165-171. doi: 10.3109/07357907.2015.1019676

 

  1. Roudkenar MH, Fukumoto M, Roushandeh AM, et al. Disturbance in the regulation of miR 17-92 cluster on HIF-1-α expression contributes to clinically relevant radioresistant cells: An in vitro study. Cytotechnology. 2020;72(1):141-153. doi: 10.1007/s10616-019-00364-9

 

  1. Yao F, Shi W, Fang F, et al. Exosomal miR-196a-5p enhances radioresistance in lung cancer cells by downregulating NFKBIA. Kaohsiung J Med Sci. 2023;39(6):554-564. doi: 10.1002/kjm2.12673

 

  1. Wang J, Wang Y, Zhou R, et al. Host long noncoding RNA lncRNA-PAAN regulates the replication of influenza a virus. Viruses. 2018;10(6):330. doi: 10.3390/v10060330

 

  1. Xiao J, Lin L, Luo D, et al. Long noncoding RNA TRPM2-AS acts as a microRNA sponge of miR-612 to promote gastric cancer progression and radioresistance. Oncogenesis. 2020;9(3):1-15. doi: 10.1038/s41389-020-0215-2

 

  1. Yu Z, Wang G, Zhang C, et al. LncRNA SBF2-AS1 affects the radiosensitivity of non-small cell lung cancer via modulating microRNA-302a/MBNL3 axis. Cell Cycle Georget Tex. 2020;19(3):300-316. doi: 10.1080/15384101.2019.1708016

 

  1. Wang Z. LncRNA CCAT1 downregulation increases the radiosensitivity of non-small cell lung cancer cells. Kaohsiung J Med Sci. 2021;37(8):654-663. doi: 10.1002/kjm2.12387

 

  1. Zhao X, Jin X, Zhang Q, et al. Silencing of the lncRNA H19 enhances sensitivity to X-ray and carbon-ions through the miR-130a-3p/WNK3 signaling axis in NSCLC cells. Cancer Cell Int. 2021;21(1):644. doi: 10.1186/s12935-021-02268-1

 

  1. Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: The role of ferroptosis in cancer. Nat Rev Clin Oncol. 2021;18(5):280-296. doi: 10.1038/s41571-020-00462-0

 

  1. Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156(1- 2):317-331. doi: 10.1016/j.cell.2013.12.010

 

  1. Zhang X, Li X, Zheng C, et al. Ferroptosis, a new form of cell death defined after radiation exposure. Int J Radiat Biol. 2022;98(7):1201-1209. doi: 10.1080/09553002.2022.2020358

 

  1. Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273-285. doi: 10.1016/j.cell.2017.09.021

 

  1. Fuhrmann DC, Mondorf A, Beifuß J, Jung M, Brüne B. Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis. Redox Biol. 2020;36:101670. doi: 10.1016/j.redox.2020.101670

 

  1. Zhang Y, Liu X, Zeng L, et al. Exosomal protein angiopoietin-like 4 mediated radioresistance of lung cancer by inhibiting ferroptosis under hypoxic microenvironment. Br J Cancer. 2022;127(10):1760-1772. doi: 10.1038/s41416-022-01956-7

 

  1. Lei G, Zhang Y, Koppula P, et al. The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 2020;30(2):146-162. doi: 10.1038/s41422-019-0263-3

 

  1. Pan X, Lin Z, Jiang D, et al. Erastin decreases radioresistance of NSCLC cells partially by inducing GPX4-mediated ferroptosis. Oncol Lett. 2019;17(3):3001-3008. doi: 10.3892/ol.2019.9888

 

  1. Wang W, Xia X, Chen M, Meng Y, Zhou S, Yang H. P62.03 Increased GPX4 drives ferroptosis resistance by suppressing radiation-induced lipid peroxidation Confers acquired radioresistance in NSCLC. J Thorac Oncol. 2021;16(3 Supplement):S548. doi: 10.1016/j.jtho.2021.01.977

 

  1. Almahi WA, Yu KN, Mohammed F, Kong P, Han W. Hemin enhances radiosensitivity of lung cancer cells through ferroptosis. Exp Cell Res. 2022;410(1):112946. doi: 10.1016/j.yexcr.2021.112946

 

  1. Ren J, Wang R, Huang G, Song H, Chen Y, Chen L. SFRP1 inhibits epithelial-mesenchymal transition in A549 human lung adenocarcinoma cell line. Cancer Biother Radiopharm. 2013;28(7):565-571. doi: 10.1089/cbr.2012.1453

 

  1. Das V, Bhattacharya S, Chikkaputtaiah C, Hazra S, Pal M. The basics of epithelial-mesenchymal transition (EMT): A study from a structure, dynamics, and functional perspective. J Cell Physiol. 2019;234(9):14535-14555. doi: 10.1002/jcp.28160

 

  1. Banyard J, Bielenberg DR. The role of EMT and MET in cancer dissemination. Connect Tissue Res. 2015;56(5):403-413. doi: 10.3109/03008207.2015.1060970

 

  1. Wang H, Wang Z, Li Y, Lu T, Hu G. Silencing snail reverses epithelial-mesenchymal transition and increases radiosensitivity in hypopharyngeal carcinoma. Onco Targets Ther. 2020;13:497-511. doi: 10.2147/OTT.S237410

 

  1. Tan S, Yi P, Wang H, et al. RAC1 involves in the radioresistance by mediating epithelial-mesenchymal transition in lung cancer. Front Oncol. 2020;10:649. doi: 10.3389/fonc.2020.00649

 

  1. Owen KL, Brockwell NK, Parker BS. JAK-STAT signaling: A double-edged sword of immune regulation and cancer progression. Cancers. 2019;11(12):2002. doi: 10.3390/cancers11122002

 

  1. Kim E, Youn H, Kwon T, et al. PAK1 tyrosine phosphorylation is required to induce epithelial-mesenchymal transition and radioresistance in lung cancer cells. Cancer Res. 2014;74(19):5520-5531. doi: 10.1158/0008-5472.CAN-14-0735

 

  1. Kang J, Kim E, Kim W, et al. Rhamnetin and cirsiliol induce radiosensitization and inhibition of epithelial-mesenchymal transition (EMT) by miR-34a-mediated suppression of notch-1 expression in non-small cell lung cancer cell lines. J Biol Chem. 2013;288(38):27343-27357. doi: 10.1074/jbc.M113.490482

 

  1. Huang C, Huang M, Chen W, et al. N-acetylglucosaminyltransferase V modulates radiosensitivity and migration of small cell lung cancer through epithelial-mesenchymal transition. FEBS J. 2015;282(22):4295-4306. doi: 10.1111/febs.13419

 

  1. Kang J, Kim W, Kwon T, Youn H, Kim JS, Youn B. Plasminogen activator inhibitor-1 enhances radioresistance and aggressiveness of non-small cell lung cancer cells. Oncotarget. 2016;7(17):23961-23974. doi: 10.18632/oncotarget.8208

 

  1. Yao YH, Cui Y, Qiu XN, et al. Attenuated LKB1-SIK1 signaling promotes epithelial-mesenchymal transition and radioresistance of non-small cell lung cancer cells. Chin J Cancer. 2016;35:50. doi: 10.1186/s40880-016-0113-3

 

  1. Gomez-Casal R, Bhattacharya C, Ganesh N, et al. Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial-mesenchymal transition phenotypes. Mol Cancer. 2013;12(1):94. doi: 10.1186/1476-4598-12-94

 

  1. Yin H, Wang X, Zhang X, et al. UBE2T promotes radiation resistance in non-small cell lung cancer via inducing epithelial-mesenchymal transition and the ubiquitination-mediated FOXO1 degradation. Cancer Lett. 2020;494:121-131. doi: 10.1016/j.canlet.2020.06.005

 

  1. Tahmasebi-Birgani MJ, Teimoori A, Ghadiri A, Mansoury- Asl H, Danyaei A, Khanbabaei H. Fractionated radiotherapy might induce epithelial-mesenchymal transition and radioresistance in a cellular context manner. J Cell Biochem. 2019;120(5):8601-8610. doi: 10.1002/jcb.28148

 

  1. Cui YH, Kang JH, Suh Y, et al. Loss of FBXL14 promotes mesenchymal shift and radioresistance of non-small cell lung cancer by TWIST1 stabilization. Signal Transduct Target Ther. 2021;6(1):272. doi: 10.1038/s41392-021-00599-z

 

  1. Tian X, Gu T, Lee MH, Dong Z. Challenge and countermeasures for EGFR targeted therapy in non-small cell lung cancer. Biochim Biophys Acta Rev Cancer. 2022;1877(1):188645. doi: 10.1016/j.bbcan.2021.188645

 

  1. Das AK, Chen BP, Story MD, et al. Somatic mutations in the tyrosine kinase domain of epidermal growth factor receptor (EGFR) abrogate EGFR-mediated radioprotection in non-small cell lung carcinoma. Cancer Res. 2007;67(11):5267-5274. doi: 10.1158/0008-5472.CAN-07-0242

 

  1. Liang K, Ang KK, Milas L, Hunter N, Fan Z. The epidermal growth factor receptor mediates radioresistance. Int J Radiat Oncol. 2003;57(1):246-254. doi: 10.1016/S0360-3016(03)00511-X

 

  1. Toulany M. Targeting DNA double-strand break repair pathways to improve radiotherapy response. Genes. 2019;10(1):25. doi: 10.3390/genes10010025

 

  1. Raghav KPS, Gonzalez-Angulo AM, Blumenschein GR. Role of HGF/MET axis in resistance of lung cancer to contemporary management. Transl Lung Cancer Res. 2012;1(3):179-193. doi: 10.3978/j.issn.2218-6751.2012.09.04

 

  1. Tebar F, Enrich C, Rentero C, Grewal T. GTPases rac1 and ras signaling from endosomes. Prog Mol Subcell Biol. 2018;57:65-105. doi: 10.1007/978-3-319-96704-2_3

 

  1. Aviel-Ronen S, Blackhall FH, Shepherd FA, Tsao MS. K-ras mutations in non-small-cell lung carcinoma: A review. Clin Lung Cancer. 2006;8(1):30-38. doi: 10.3816/CLC.2006.n.030

 

  1. Garcia-Aguilar J, Chen Z, Smith DD, et al. Identification of a biomarker profile associated with resistance to neoadjuvant chemoradiation therapy in rectal cancer. Ann Surg. 2011;254(3):486-492; discussion 492-493.doi: 10.1097/SLA.0b013e31822b8cfa

 

  1. Zhu DQ, Liu Y, Yu ZJ, et al. The diverse analysis identifies mutated KRAS associated with radioresistance in non-small cell lung cancer. World J Oncol. 2022;13(2):84-95. doi: 10.14740/wjon1465

 

  1. Padanad MS, Konstantinidou G, Venkateswaran N, et al. Fatty acid oxidation mediated by acyl-coa synthetase long chain 3 is required for mutant kras lung tumorigenesis. Cell Rep. 2016;16(6):1614-1628. doi: 10.1016/j.celrep.2016.07.009

 

  1. Kerr EM, Gaude E, Turrell FK, Frezza C, Martins CP. Mutant kras copy number defines metabolic reprogramming and therapeutic susceptibilities. Nature. 2016; 531(7592):110-113. doi: 10.1038/nature16967

 

  1. Baird L, Yamamoto M. The molecular mechanisms regulating the KEAP1-NRF2 Pathway. Mol Cell Biol. 2020;40(13):e00099-e00020. doi: 10.1128/MCB.00099-20

 

  1. Arbour KC, Jordan E, Kim HR, et al. Effects of co-occurring genomic alterations on outcomes in patients with kras-mutant non-small cell lung cancer. Clin Cancer Res. 2018;24(2):334-340. doi: 10.1158/1078-0432.CCR-17-1841

 

  1. Binkley MS, Jeon YJ, Nesselbush M, et al. KEAP1/NFE2L2 mutations predict lung cancer radiation resistance that can be targeted by glutaminase inhibition. Cancer Discov. 2020;10(12):1826-1841. doi: 10.1158/2159-8290.CD-20-0282

 

  1. Best SA, Sutherland KD. “Keaping” a lid on lung cancer: The keap1-nrf2 pathway. Cell Cycle Georget Tex. 2018;17(14):1696-1707. doi: 10.1080/15384101.2018.1496756

 

  1. Sitthideatphaiboon P, Galan-Cobo A, Negrao MV, et al. LKB1 mutations in NSCLC are associated with KEAP1/NRF2-dependent radiotherapy resistance targetable by glutaminase inhibition. Clin Cancer Res. 2021;27(6):1720-1733. doi: 10.1158/1078-0432.CCR-20-2859

 

  1. Koppula P, Lei G, Zhang Y, et al. A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers. Nat Commun. 2022;13(1):2206. doi: 10.1038/s41467-022-29905-1

 

  1. Mikac S, Rychłowski M, Dziadosz A, et al. Identification of a stable, non-canonically regulated Nrf2 form in lung cancer cells. Antioxid Basel Switz. 2021;10(5):786. doi: 10.3390/antiox10050786
Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing