Causal relationships between mitochondrial DNA copy number and hypertensive disorders in pregnancy: A Mendelian randomization study

Introduction: The association between mitochondrial DNA (mtDNA) copy number and hypertensive disorders in pregnancy has been explored in several observational studies; however, due to methodological limitations and confounding factors, consistent conclusions have not been reached. Objectives: This study aimed to determine whether genetically predicted mtDNA copy number has a causal effect on the risk of hypertensive disorders in pregnancy using Mendelian randomization (MR) analysis. Methods: MR analyses were performed to assess genetic relationships and potential causal associations among four hypertensive pregnancy outcomes: Pre-existing hypertension complicating pregnancy, gestational hypertension, pre-eclampsia or eclampsia (POE), and pre-eclampsia (PE). The mtDNA copy number for each outcome was obtained from genome-wide association study datasets. The primary MR method was inverse variance weighting (IVW), supported by four complementary approaches (MR-Egger, weighted median, simple mode, and weighted mode) to ensure robust inference. Results: IVW analysis revealed a significant inverse correlation between mtDNA copy number and both POE (odds ratio [OR] 95% confidence interval [CI] = 0.738 [0.578 – 0.943]; p=0.015) and PE (OR [95% CI] = 0.735 [0.563 – 0.960]; p=0.024), suggesting a protective effect of higher mtDNA copy number. Conclusion: This MR investigation demonstrates a positive causal relationship between higher mtDNA copy number and reduced risk of PE and related hypertensive disorders in pregnancy.
- Fu R, Li Y, Li X, Jiang W. Hypertensive disorders in pregnancy: Global burden from 1990 to 2019, current research hotspots and emerging trends. Curr Probl Cardiol. 2023;48(12):101982. doi: 10.1016/j.cpcardiol.2023.101982
- Wu P, Green M, Myers JE. Hypertensive disorders of pregnancy. BMJ. 2023;381:e071653. doi: 10.1136/bmj-2022-071653
- Dimitriadis E, Rolnik DL, Zhou W, et al. Pre-eclampsia. Nat Rev Dis Primers. 2023;9(1):8. doi: 10.1038/s41572-023-00417-6
- Miller EC, Wilczek A, Bello NA, Tom S, Wapner R, Suh Y. Pregnancy, preeclampsia and maternal aging: From epidemiology to functional genomics. Ageing Res Rev. 2022;73:101535. doi: 10.1016/j.arr.2021.101535
- Abalos E, Cuesta C, Grosso AL, Chou D, Say L. Global and regional estimates of preeclampsia and eclampsia: A systematic review. Eur J Obstet Gynecol Reprod Biol. 2013;170(1):1-7. doi: 10.1016/j.ejogrb.2013.05.005
- Kuehn BM. Hypertensive disorders in pregnancy are on the rise. JAMA. 2022;327(24):2387. doi: 10.1001/jama.2022.9510
- Kipnis CM, Daly PL, Goodwin ET, Smith DK. Hypertensive conditions: Hypertensive disorders in pregnancy. FP Essent. 2022;522:25-33.
- Thi Huyen Anh N, Manh Thang N, Thanh Huong T. Maternal and perinatal outcomes of hypertensive disorders in pregnancy: Insights from the national hospital of obstetrics and gynecology in Vietnam. PLoS One. 2024;19(1):e0297302. doi: 10.1371/journal.pone.0297302
- Petca A, Miron BC, Pacu I, et al. HELLP syndrome-holistic insight into pathophysiology. Medicina (Kaunas). 2022;58(2):326. doi: 10.3390/medicina58020326
- Li F, Wang T, Chen L, Zhang S, Chen L, Qin J. Adverse pregnancy outcomes among mothers with hypertensive disorders in pregnancy: A meta-analysis of cohort studies. Pregnancy Hypertens. 2021;24:107-117. doi: 10.1016/j.preghy.2021.03.001
- Silveira MR, Martins GJ, Matsuda NS, et al. PP091. Prematurity and hypertensive disorders in pregnancy. A major public health problem. Pregnancy Hypertens. 2012;2(3):289-290. doi: 10.1016/j.preghy.2012.04.202
- Jung E, Romero R, Yeo L, et al. The etiology of preeclampsia. Am J Obstet Gynecol. 2022;226(2s):S844-S866. doi: 10.1016/j.ajog.2021.11.1356
- Zare M, Namavar Jahromi B, Gharesi-Fard B. Analysis of the frequencies and functions of CD4+CD25+CD127low/neg, CD4+HLA-G+, and CD8+HLA-G+ regulatory T cells in pre-eclampsia. J Reprod Immunol. 2019;133:43-51. doi: 10.1016/j.jri.2019.06.002
- Luo S, Valencia CA, Zhang J, et al. Biparental inheritance of mitochondrial DNA in humans. Proc Natl Acad Sci U S A. 2018;115(51):13039-13044. doi: 10.1073/pnas.1810946115
- Zhang H, Burr SP, Chinnery PF. The mitochondrial DNA genetic bottleneck: Inheritance and beyond. Essays Biochem. 2018;62(3):225-234. doi: 10.1042/ebc20170096
- Gustafsson CM, Falkenberg M, Larsson NG. Maintenance and expression of mammalian mitochondrial DNA. Annu Rev Biochem. 2016;85:133-160. doi: 10.1146/annurev-biochem-060815-014402
- Pérez-Sánchez M, Pardiñas ML, Díez-Juan A, et al. The effect of vitrification on blastocyst mitochondrial DNA dynamics and gene expression profiles. J Assist Reprod Genet. 2023;40(11):2577-2589. doi: 10.1007/s10815-023-02952-3
- Akbari M, Nilsen HL, Montaldo NP. Dynamic features of human mitochondrial DNA maintenance and transcription. Front Cell Dev Biol. 2022;10:984245. doi: 10.3389/fcell.2022.984245
- Bradshaw JL, Cushen SC, Phillips NR, Goulopoulou S. Circulating cell-free mitochondrial DNA in pregnancy. Physiology (Bethesda). 2022;37(4):187-196. doi: 10.1152/physiol.00037.2021
- Mandakh Y, Oudin A, Erlandsson L, et al. Association of prenatal ambient air pollution exposure with placental mitochondrial DNA copy number, telomere length and preeclampsia. Front Toxicol. 2021;3:659407. doi: 10.3389/ftox.2021.659407
- Marschalek J, Wohlrab P, Ott J, et al. Maternal serum mitochondrial DNA (mtDNA) levels are elevated in preeclampsia - a matched case-control study. Pregnancy Hypertens. 2018;14:195-199. doi: 10.1016/j.preghy.2018.10.003
- Lv Z, Lv DY, Meng JY, et al. Trophoblastic mitochondrial DNA induces endothelial dysfunction and NLRP3 inflammasome activation: Implications for preeclampsia. Int Immunopharmacol. 2023;114:109523. doi: 10.1016/j.intimp.2022.109523
- Goulopoulou S, Matsumoto T, Bomfim GF, Webb RC. Toll-like receptor 9 activation: A novel mechanism linking placenta-derived mitochondrial DNA and vascular dysfunction in pre-eclampsia. Clin Sci (Lond). 2012;123(7):429-435. doi: 10.1042/cs20120130
- Novielli C, Mandò C, Tabano S, et al. Mitochondrial DNA content and methylation in fetal cord blood of pregnancies with placental insufficiency. Placenta. 2017;55:63-70. doi: 10.1016/j.placenta.2017.05.008
- Williams MA, Sanchez SE, Ananth CV, Hevner K, Qiu C, Enquobahrie DA. Maternal blood mitochondrial DNA copy number and placental abruption risk: Results from a preliminary study. Int J Mol Epidemiol Genet. 2013;4(2):120-127.
- Vishnyakova PA, Volodina MA, Tarasova NV, et al. Mitochondrial role in adaptive response to stress conditions in preeclampsia. Sci Rep. 2016;6:32410. doi: 10.1038/srep32410
- Cushen SC, Ricci CA, Bradshaw JL, et al. Reduced maternal circulating cell-free mitochondrial DNA is associated with the development of preeclampsia. J Am Heart Assoc. 2022;11(2):e021726. doi: 10.1161/jaha.121.021726
- Zhang R, Du J, Xiao Z, Jiang Y, Jin L, Weng Q. Association between the peripartum maternal and fetal telomere lengths and mitochondrial DNA copy numbers and preeclampsia: A prospective case-control study. BMC Pregnancy Childbirth. 2022;22(1):483. doi: 10.1186/s12884-022-04801-0
- Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA. 2017;318(19):1925-1926. doi: 10.1001/jama.2017.17219
- Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133-1163. doi: 10.1002/sim.3034
- Davies NM, Holmes MV, Davey Smith G. Reading mendelian randomisation studies: A guide, glossary, and checklist for clinicians. BMJ. 2018;362:k601. doi: 10.1136/bmj.k601
- Chong M, Mohammadi-Shemirani P, Perrot N, et al. GWAS and ExWAS of blood mitochondrial DNA copy number identifies 71 loci and highlights a potential causal role in dementia. Elife. 2022;11:e70382. doi: 10.7554/eLife.70382
- Bowden J, Del Greco MF, Minelli C, et al. Improving the accuracy of two-sample summary-data mendelian randomization: Moving beyond the NOME assumption. Int J Epidemiol. 2019;48(3):728-742. doi: 10.1093/ije/dyy258
- Riemma G, De Franciscis P, Tesorone M, et al. Obstetric and gynecological admissions and hospitalizations in an Italian tertiary-care hospital during COVID-19 pandemic: A retrospective analysis according to restrictive measures. J Clin Med. 2023;12(22):7097. doi: 10.3390/jcm12227097
- Maranto M, Gullo G, Bruno A, et al. Factors associated with anti-SARS-CoV-2 vaccine acceptance among pregnant women: Data from outpatient women experiencing high-risk pregnancy. Vaccines (Basel). 2023;11(2):454. doi: 10.3390/vaccines11020454
- Maranto M, Zaami S, Restivo V, et al. Symptomatic COVID-19 in pregnancy: Hospital cohort data between May 2020 and April 2021, risk factors and medicolegal implications. Diagnostics (Basel). 2023;13(6):1009. doi: 10.3390/diagnostics13061009
- Gullo G, Scaglione M, Cucinella G, et al. Congenital Zika syndrome: Genetic avenues for diagnosis and therapy, possible management and long-term outcomes. J Clin Med. 2022;11(5):1351. doi: 10.3390/jcm11051351
- Pasta V, Gullo G, Giuliani A, et al. An association of Boswellia, betaine and myo-inositol (Eumastós) in the treatment of mammographic breast density: A randomized, double-blind study. Eur Rev Med Pharmacol Sci. 2015;19(22):4419-4426.
- Barron A, Manna S, McElwain CJ, et al. Maternal pre-eclampsia serum increases neurite growth and mitochondrial function through a potential IL-6-dependent mechanism in differentiated SH-SY5Y cells. Front Physiol. 2022;13:1043481. doi: 10.3389/fphys.2022.1043481
- McCarthy C, Kenny LC. Therapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia. Sci Rep. 2016;6:32683. doi: 10.1038/srep32683
- Correia Y, Scheel J, Gupta S, Wang K. Placental mitochondrial function as a driver of angiogenesis and placental dysfunction. Biol Chem. 2021;402(8):887-909. doi: 10.1515/hsz-2021-0121
- Yu JH, Jung YJ, Kim MS, Cho SR, Kim YH. Differential expression of NME4 in trophoblast stem-like cells and peripheral blood mononuclear cells of normal pregnancy and preeclampsia. J Korean Med Sci. 2023;38(16):e128. doi: 10.3346/jkms.2023.38.e128
- Korkes HA, De Oliveira L, Sass N, Salahuddin S, Karumanchi SA, Rajakumar A. Relationship between hypoxia and downstream pathogenic pathways in preeclampsia. Hypertens Pregnancy. 2017;36(2):145-150. doi: 10.1080/10641955.2016.1259627
- Busnelli A, Lattuada D, Ferrari S, et al. Mitochondrial DNA copy number in peripheral blood in the first trimester of pregnancy and different preeclampsia clinical phenotypes development: A pilot study. Reprod Sci. 2019;26(8):1054-1061. doi: 10.1177/1933719118804410
- Pandey D, Yevale A, Naha R, Kuthethur R, Chakrabarty S, Satyamoorthy K. Mitochondrial DNA copy number variation - A potential biomarker for early onset preeclampsia. Pregnancy Hypertens. 2021;23:1-4. doi: 10.1016/j.preghy.2020.10.002