AccScience Publishing / EJMO / Online First / DOI: 10.36922/EJMO025140077
ORIGINAL RESEARCH ARTICLE

Causal relationships between mitochondrial DNA copy number and hypertensive disorders in pregnancy: A Mendelian randomization study

Lunzhi Liu1 Ao Wang2 Ke Yi1,2*
Show Less
1 Department of Nephrology, Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases / Hubei Provincial Clinical Research Center for Nephrology, Minda Hospital of Hubei Minzu University, Hubei Minzu University, Enshi, Hubei, China
2 Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
Received: 31 March 2025 | Revised: 28 April 2025 | Accepted: 15 May 2025 | Published online: 1 July 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Introduction: The association between mitochondrial DNA (mtDNA) copy number and hypertensive disorders in pregnancy has been explored in several observational studies; however, due to methodological limitations and confounding factors, consistent conclusions have not been reached. Objectives: This study aimed to determine whether genetically predicted mtDNA copy number has a causal effect on the risk of hypertensive disorders in pregnancy using Mendelian randomization (MR) analysis. Methods: MR analyses were performed to assess genetic relationships and potential causal associations among four hypertensive pregnancy outcomes: Pre-existing hypertension complicating pregnancy, gestational hypertension, pre-eclampsia or eclampsia (POE), and pre-eclampsia (PE). The mtDNA copy number for each outcome was obtained from genome-wide association study datasets. The primary MR method was inverse variance weighting (IVW), supported by four complementary approaches (MR-Egger, weighted median, simple mode, and weighted mode) to ensure robust inference. Results: IVW analysis revealed a significant inverse correlation between mtDNA copy number and both POE (odds ratio [OR] 95% confidence interval [CI] = 0.738 [0.578 – 0.943]; p=0.015) and PE (OR [95% CI] = 0.735 [0.563 – 0.960]; p=0.024), suggesting a protective effect of higher mtDNA copy number. Conclusion: This MR investigation demonstrates a positive causal relationship between higher mtDNA copy number and reduced risk of PE and related hypertensive disorders in pregnancy.

Keywords
Hypertensive disorders in pregnancy
Mitochondrial DNA copy number
Mendelian randomization
Single nucleotide polymorphism
Instrumental variable
Funding
None.
Conflict of interest
The authors declare there are no competing interests, including potential ones, to disclose in relation to the publication of this paper.
References
  1. Fu R, Li Y, Li X, Jiang W. Hypertensive disorders in pregnancy: Global burden from 1990 to 2019, current research hotspots and emerging trends. Curr Probl Cardiol. 2023;48(12):101982. doi: 10.1016/j.cpcardiol.2023.101982

 

  1. Wu P, Green M, Myers JE. Hypertensive disorders of pregnancy. BMJ. 2023;381:e071653. doi: 10.1136/bmj-2022-071653

 

  1. Dimitriadis E, Rolnik DL, Zhou W, et al. Pre-eclampsia. Nat Rev Dis Primers. 2023;9(1):8. doi: 10.1038/s41572-023-00417-6

 

  1. Miller EC, Wilczek A, Bello NA, Tom S, Wapner R, Suh Y. Pregnancy, preeclampsia and maternal aging: From epidemiology to functional genomics. Ageing Res Rev. 2022;73:101535. doi: 10.1016/j.arr.2021.101535

 

  1. Abalos E, Cuesta C, Grosso AL, Chou D, Say L. Global and regional estimates of preeclampsia and eclampsia: A systematic review. Eur J Obstet Gynecol Reprod Biol. 2013;170(1):1-7. doi: 10.1016/j.ejogrb.2013.05.005

 

  1. Kuehn BM. Hypertensive disorders in pregnancy are on the rise. JAMA. 2022;327(24):2387. doi: 10.1001/jama.2022.9510

 

  1. Kipnis CM, Daly PL, Goodwin ET, Smith DK. Hypertensive conditions: Hypertensive disorders in pregnancy. FP Essent. 2022;522:25-33.

 

  1. Thi Huyen Anh N, Manh Thang N, Thanh Huong T. Maternal and perinatal outcomes of hypertensive disorders in pregnancy: Insights from the national hospital of obstetrics and gynecology in Vietnam. PLoS One. 2024;19(1):e0297302. doi: 10.1371/journal.pone.0297302

 

  1. Petca A, Miron BC, Pacu I, et al. HELLP syndrome-holistic insight into pathophysiology. Medicina (Kaunas). 2022;58(2):326. doi: 10.3390/medicina58020326

 

  1. Li F, Wang T, Chen L, Zhang S, Chen L, Qin J. Adverse pregnancy outcomes among mothers with hypertensive disorders in pregnancy: A meta-analysis of cohort studies. Pregnancy Hypertens. 2021;24:107-117. doi: 10.1016/j.preghy.2021.03.001

 

  1. Silveira MR, Martins GJ, Matsuda NS, et al. PP091. Prematurity and hypertensive disorders in pregnancy. A major public health problem. Pregnancy Hypertens. 2012;2(3):289-290. doi: 10.1016/j.preghy.2012.04.202

 

  1. Jung E, Romero R, Yeo L, et al. The etiology of preeclampsia. Am J Obstet Gynecol. 2022;226(2s):S844-S866. doi: 10.1016/j.ajog.2021.11.1356

 

  1. Zare M, Namavar Jahromi B, Gharesi-Fard B. Analysis of the frequencies and functions of CD4+CD25+CD127low/neg, CD4+HLA-G+, and CD8+HLA-G+ regulatory T cells in pre-eclampsia. J Reprod Immunol. 2019;133:43-51. doi: 10.1016/j.jri.2019.06.002

 

  1. Luo S, Valencia CA, Zhang J, et al. Biparental inheritance of mitochondrial DNA in humans. Proc Natl Acad Sci U S A. 2018;115(51):13039-13044. doi: 10.1073/pnas.1810946115

 

  1. Zhang H, Burr SP, Chinnery PF. The mitochondrial DNA genetic bottleneck: Inheritance and beyond. Essays Biochem. 2018;62(3):225-234. doi: 10.1042/ebc20170096

 

  1. Gustafsson CM, Falkenberg M, Larsson NG. Maintenance and expression of mammalian mitochondrial DNA. Annu Rev Biochem. 2016;85:133-160. doi: 10.1146/annurev-biochem-060815-014402

 

  1. Pérez-Sánchez M, Pardiñas ML, Díez-Juan A, et al. The effect of vitrification on blastocyst mitochondrial DNA dynamics and gene expression profiles. J Assist Reprod Genet. 2023;40(11):2577-2589. doi: 10.1007/s10815-023-02952-3

 

  1. Akbari M, Nilsen HL, Montaldo NP. Dynamic features of human mitochondrial DNA maintenance and transcription. Front Cell Dev Biol. 2022;10:984245. doi: 10.3389/fcell.2022.984245

 

  1. Bradshaw JL, Cushen SC, Phillips NR, Goulopoulou S. Circulating cell-free mitochondrial DNA in pregnancy. Physiology (Bethesda). 2022;37(4):187-196. doi: 10.1152/physiol.00037.2021

 

  1. Mandakh Y, Oudin A, Erlandsson L, et al. Association of prenatal ambient air pollution exposure with placental mitochondrial DNA copy number, telomere length and preeclampsia. Front Toxicol. 2021;3:659407. doi: 10.3389/ftox.2021.659407

 

  1. Marschalek J, Wohlrab P, Ott J, et al. Maternal serum mitochondrial DNA (mtDNA) levels are elevated in preeclampsia - a matched case-control study. Pregnancy Hypertens. 2018;14:195-199. doi: 10.1016/j.preghy.2018.10.003

 

  1. Lv Z, Lv DY, Meng JY, et al. Trophoblastic mitochondrial DNA induces endothelial dysfunction and NLRP3 inflammasome activation: Implications for preeclampsia. Int Immunopharmacol. 2023;114:109523. doi: 10.1016/j.intimp.2022.109523

 

  1. Goulopoulou S, Matsumoto T, Bomfim GF, Webb RC. Toll-like receptor 9 activation: A novel mechanism linking placenta-derived mitochondrial DNA and vascular dysfunction in pre-eclampsia. Clin Sci (Lond). 2012;123(7):429-435. doi: 10.1042/cs20120130

 

  1. Novielli C, Mandò C, Tabano S, et al. Mitochondrial DNA content and methylation in fetal cord blood of pregnancies with placental insufficiency. Placenta. 2017;55:63-70. doi: 10.1016/j.placenta.2017.05.008

 

  1. Williams MA, Sanchez SE, Ananth CV, Hevner K, Qiu C, Enquobahrie DA. Maternal blood mitochondrial DNA copy number and placental abruption risk: Results from a preliminary study. Int J Mol Epidemiol Genet. 2013;4(2):120-127.

 

  1. Vishnyakova PA, Volodina MA, Tarasova NV, et al. Mitochondrial role in adaptive response to stress conditions in preeclampsia. Sci Rep. 2016;6:32410. doi: 10.1038/srep32410

 

  1. Cushen SC, Ricci CA, Bradshaw JL, et al. Reduced maternal circulating cell-free mitochondrial DNA is associated with the development of preeclampsia. J Am Heart Assoc. 2022;11(2):e021726. doi: 10.1161/jaha.121.021726

 

  1. Zhang R, Du J, Xiao Z, Jiang Y, Jin L, Weng Q. Association between the peripartum maternal and fetal telomere lengths and mitochondrial DNA copy numbers and preeclampsia: A prospective case-control study. BMC Pregnancy Childbirth. 2022;22(1):483. doi: 10.1186/s12884-022-04801-0

 

  1. Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA. 2017;318(19):1925-1926. doi: 10.1001/jama.2017.17219

 

  1. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133-1163. doi: 10.1002/sim.3034

 

  1. Davies NM, Holmes MV, Davey Smith G. Reading mendelian randomisation studies: A guide, glossary, and checklist for clinicians. BMJ. 2018;362:k601. doi: 10.1136/bmj.k601

 

  1. Chong M, Mohammadi-Shemirani P, Perrot N, et al. GWAS and ExWAS of blood mitochondrial DNA copy number identifies 71 loci and highlights a potential causal role in dementia. Elife. 2022;11:e70382. doi: 10.7554/eLife.70382

 

  1. Bowden J, Del Greco MF, Minelli C, et al. Improving the accuracy of two-sample summary-data mendelian randomization: Moving beyond the NOME assumption. Int J Epidemiol. 2019;48(3):728-742. doi: 10.1093/ije/dyy258

 

  1. Riemma G, De Franciscis P, Tesorone M, et al. Obstetric and gynecological admissions and hospitalizations in an Italian tertiary-care hospital during COVID-19 pandemic: A retrospective analysis according to restrictive measures. J Clin Med. 2023;12(22):7097. doi: 10.3390/jcm12227097

 

  1. Maranto M, Gullo G, Bruno A, et al. Factors associated with anti-SARS-CoV-2 vaccine acceptance among pregnant women: Data from outpatient women experiencing high-risk pregnancy. Vaccines (Basel). 2023;11(2):454. doi: 10.3390/vaccines11020454

 

  1. Maranto M, Zaami S, Restivo V, et al. Symptomatic COVID-19 in pregnancy: Hospital cohort data between May 2020 and April 2021, risk factors and medicolegal implications. Diagnostics (Basel). 2023;13(6):1009. doi: 10.3390/diagnostics13061009

 

  1. Gullo G, Scaglione M, Cucinella G, et al. Congenital Zika syndrome: Genetic avenues for diagnosis and therapy, possible management and long-term outcomes. J Clin Med. 2022;11(5):1351. doi: 10.3390/jcm11051351

 

  1. Pasta V, Gullo G, Giuliani A, et al. An association of Boswellia, betaine and myo-inositol (Eumastós) in the treatment of mammographic breast density: A randomized, double-blind study. Eur Rev Med Pharmacol Sci. 2015;19(22):4419-4426.

 

  1. Barron A, Manna S, McElwain CJ, et al. Maternal pre-eclampsia serum increases neurite growth and mitochondrial function through a potential IL-6-dependent mechanism in differentiated SH-SY5Y cells. Front Physiol. 2022;13:1043481. doi: 10.3389/fphys.2022.1043481

 

  1. McCarthy C, Kenny LC. Therapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia. Sci Rep. 2016;6:32683. doi: 10.1038/srep32683

 

  1. Correia Y, Scheel J, Gupta S, Wang K. Placental mitochondrial function as a driver of angiogenesis and placental dysfunction. Biol Chem. 2021;402(8):887-909. doi: 10.1515/hsz-2021-0121

 

  1. Yu JH, Jung YJ, Kim MS, Cho SR, Kim YH. Differential expression of NME4 in trophoblast stem-like cells and peripheral blood mononuclear cells of normal pregnancy and preeclampsia. J Korean Med Sci. 2023;38(16):e128. doi: 10.3346/jkms.2023.38.e128

 

  1. Korkes HA, De Oliveira L, Sass N, Salahuddin S, Karumanchi SA, Rajakumar A. Relationship between hypoxia and downstream pathogenic pathways in preeclampsia. Hypertens Pregnancy. 2017;36(2):145-150. doi: 10.1080/10641955.2016.1259627

 

  1. Busnelli A, Lattuada D, Ferrari S, et al. Mitochondrial DNA copy number in peripheral blood in the first trimester of pregnancy and different preeclampsia clinical phenotypes development: A pilot study. Reprod Sci. 2019;26(8):1054-1061. doi: 10.1177/1933719118804410

 

  1. Pandey D, Yevale A, Naha R, Kuthethur R, Chakrabarty S, Satyamoorthy K. Mitochondrial DNA copy number variation - A potential biomarker for early onset preeclampsia. Pregnancy Hypertens. 2021;23:1-4. doi: 10.1016/j.preghy.2020.10.002
Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing