AccScience Publishing / EJMO / Online First / DOI: 10.36922/EJMO025140076
ORIGINAL RESEARCH ARTICLE

Targeting STAT3 enhances glioblastoma therapeutic sensitivity through valproic acid-mediated regulation of the tumor microenvironment

Leina Li1 Moli Wu1 Xu Zheng1 Jia Liu1*
Show Less
1 Liaoning Laboratory of Cancer Genomics and Epigenomics, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
Received: 31 March 2025 | Revised: 29 April 2025 | Accepted: 9 May 2025 | Published online: 23 June 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Introduction: Glioblastoma (GBM) is a highly malignant tumor of the nervous system, posing serious threats to patient survival and quality of life. However, current treatment options remain limited in both availability and effectiveness. Objective: This study analyzes the gene expression data related to GBM to support the development of improved therapeutic strategies. Methods: Two gene expression datasets were selected for statistical analysis. Differentially expressed genes (DEGs) related to GBM were screened based on predefined criteria. Enrichment analysis was performed to explore the biological processes and pathways involved. A protein-protein interaction (PPI) network was constructed to identify central genes, which were further analyzed for expression patterns and their potential roles in GBM pathology. Results: A total of 1,151 overlapping DEGs were identified. Enrichment analysis revealed their involvement in several key biological processes and pathways. From the PPI network, central genes, including signal transducer and activator of transcription 3 (STAT3), CAML1, clathrin assembly lymphoid myeloid 2, and protein kinase CAMP-activated catalytic subunit beta were identified as playing crucial roles in GBM development. Immune cell subtype analysis indicated interactions between these genes and the tumor microenvironment. The diagnostic value highlighted STAT3 as a potential biomarker for GBM. In vivo experiments confirmed that gene expression patterns were consistent with database predictions. Molecular docking analysis identified valproic acid as a promising therapeutic candidate, targeting five central genes. In vitro studies demonstrated that valproic acid effectively induced GBM cell death and modulated the expression of these genes, with high safety observed. Conclusion: Identifying DEGs and central genes is essential in understanding GBM pathology. This study establishes STAT3 as a diagnostic marker and highlights valproic acid as a potential multi-target therapeutic agent. These findings lay the groundwork for more effective and targeted treatment strategies for GBM.

Keywords
Glioblastoma
Signal transducer and activator of transcription 3
Differentially expressed genes
Valproic acid
Funding
None.
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Rayati M, Mansouri V, Ahmadbeigi N. Gene therapy in glioblastoma multiforme: Can it be a role changer? Heliyon. 2024;10(5):e27087. doi: 10.1016/j.heliyon.2024.e27087

 

  1. Hamad A, Yusubalieva GM, Baklaushev VP, Chumakov PM, Lipatova AV. Recent developments in glioblastoma therapy: Oncolytic viruses and emerging future strategies. Viruses. 2023;15(2):547. doi: 10.3390/v15020547

 

  1. Minniti G, Niyazi M, Alongi F, Navarria P, Belka C. Current status and recent advances in reirradiation of glioblastoma. Radiat Oncol. 2021;16(1):36. doi: 10.1186/s13014-021-01767-9

 

  1. Perry JR, Laperriere N, O’Callaghan CJ, et al. Short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med. 2017;376(11):1027-1037. doi: 10.1056/NEJMoa1611977

 

  1. Ye L, Gu L, Wang Y, et al. Identification of TMZ resistance-associated histone post-translational modifications in glioblastoma using multi-omics data. CNS Neurosci Ther. 2024;30(3):e14649. doi: 10.1111/cns.14649

 

  1. Li K, Du Y, Li L, Wei DQ. Bioinformatics approaches for anti-cancer drug discovery. Curr Drug Targets. 2020;21(1):3-17. doi: 10.2174/1389450120666190923162203

 

  1. Tran TO, Vo TH, Lam LHT, Le NQK. ALDH2 as a potential stem cell-related biomarker in lung adenocarcinoma: Comprehensive multi-omics analysis. Comput Struct Biotechnol J. 2023;21:1921-1929. doi: 10.1016/j.csbj.2023.02.045

 

  1. Dang HH, Ta HDK, Nguyen TTT, et al. Identifying GPSM family members as potential biomarkers in breast cancer: A comprehensive bioinformatics analysis. Biomedicines. 2021;9(9):1144. doi: 10.3390/biomedicines9091144

 

  1. Cakir MU, Yavuz-Aksu B, Aksu U. Hypervolemia suppresses dilutional anaemic injury in a rat model of haemodilution. J Transl Int Med. 2022;11(4):393-400. doi: 10.2478/jtim-2022-0045

 

  1. Chen X, Wang M, Yu K, et al. Chronic stress-induced immune dysregulation in breast cancer: Implications of psychosocial factors. J Transl Int Med. 2022;11(3):226-233. doi: 10.2478/jtim-2021-0050

 

  1. Deng M, Wang M, Zhang Q, et al. Point-of-care ultrasound-guided submucosal paclitaxel injection in tracheal stenosis model. J Transl Int Med. 2023;11(1):70-80. doi: 10.2478/jtim-2022-0044

 

  1. Deng Y, Wang H, Guo X, Jiang S, Cai J. Long-term blood pressure outcomes of laparoscopic adrenalectomy in trHTN patients. J Transl Int Med. 2021;11(1):275-281. doi: 10.2478/jtim-2023-0107

 

  1. Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49(D1):D545-D551. doi: 10.1093/nar/gkaa970

 

  1. Dennis G Jr., Sherman BT, Hosack DA, et al. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4(5):P3.

 

  1. Dou L, Lu E, Tian D, Li F, Deng L, Zhang Y. Adrenomedullin induces cisplatin chemoresistance in ovarian cancer through reprogramming of glucose metabolism. J Transl Int Med. 2023;11(2):169-177. doi: 10.2478/jtim-2023-0091

 

  1. Cao Y, Lan W, Wen L, et al. An effectiveness study of a wearable device (Clouclip) intervention in unhealthy visual behaviors among school-age children: A pilot study. Medicine (Baltimore). 2020;99(2):e17992. doi: 10.1097/MD.0000000000017992

 

  1. Chen L, Tian Q, Shi Z, Qiu Y, Lu Q, Liu C. Melatonin alleviates cardiac function in sepsis-caused myocarditis via maintenance of mitochondrial function. Front Nutr. 2021;8:754235. doi: 10.3389/fnut.2021.754235

 

  1. Rigopoulou I, Bakarozi E, Dimas M, et al. Total and individual PBC-40 scores are reliable for the assessment of health-related quality of life in Greek patients with primary biliary cholangitis. J Transl Int Med. 2023;11(3):246-254. doi: 10.2478/jtim-2023-0098

 

  1. Chen L, Zhan CZ, Wang T, You H, Yao R. Curcumin inhibits the proliferation, migration, invasion, and apoptosis of diffuse large B-cell lymphoma cell line by regulating MiR- 21/VHL axis. Yonsei Med J. 2020;61(1):20-29. doi: 10.3349/ymj.2020.61.1.20

 

  1. He Q, Li J. The evolution of folate supplementation - from one size for all to personalized, precision, poly-paths. J Transl Int Med. 2023;11(2):128-137. doi: 10.2478/jtim-2023-0087

 

  1. Cuny H, Bozon K, Kirk RB, Sheng DZ, Bröer S, Dunwoodie SL. Maternal heterozygosity of Slc6a19 causes metabolic perturbation and congenital NAD deficiency disorder in mice. Dis Model Mech. 2023;16(5):dmm049647. doi: 10.1242/dmm.049647

 

  1. Hyug Choi J, Sook Jun M, Yong Jeon J, et al. Global lineage evolution pattern of SARS-COV-2 in Africa, America, Europe, and Asia: A comparative analysis of variant clusters and their relevance across continents. J Transl Int Med. 2023;11(4):410-422. doi: 10.2478/jtim-2023-0118

 

  1. Yoo M, Shin J, Kim J, et al. DSigDB: Drug signatures database for gene set analysis. Bioinformatics. 2015;31(18):3069-3071.doi: 10.1093/bioinformatics/btv313

 

  1. Li Y, Yao Z, Li Y, et al. Prognostic value of serum ammonia in critical patients with non-hepatic disease: A prospective, observational, multicenter study. J Transl Int Med. 2022;11(4):401-409. doi: 10.2478/jtim-2022-0021

 

  1. Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings. J Chem Inf Model. 2021;61(8):3891-3898. doi: 10.1021/acs.jcim.1c00203

 

  1. Ding L, Lu S, Zhou Y, et al. The 3’ untranslated region protects the heart from angiotensin ii-induced cardiac dysfunction via AGGF1 expression. Mol Ther. 2020;28(4):1119-1132. doi: 10.1016/j.ymthe.2020.02.002

 

  1. Gao WL, Li XH, Dun XP, Jing XK, Yang K, Li YK. Grape seed proanthocyanidin extract ameliorates streptozotocin-induced cognitive and synaptic plasticity deficits by inhibiting oxidative stress and preserving AKT and ERK activities. Curr Med Sci. 2020;40(3):434-443. doi: 10.1007/s11596-020-2197-x

 

  1. Liu N, Li D, Liu D, Liu Y, Lei J. FOSL2 participates in renal fibrosis via SGK1-mediated epithelial-mesenchymal transition of proximal tubular epithelial cells. J Transl Int Med. 2023;11(3):294-308. doi: 10.2478/jtim-2023-0105

 

  1. Song X, Shu XH, Wu ML, et al. Postoperative resveratrol administration improves prognosis of rat orthotopic glioblastomas. BMC Cancer. 2018;18:871. doi: 10.1186/s12885-018-4771-1

 

  1. Xue S, Xiao-Hong S, Lin S, et al. Lumbar puncture-administered resveratrol inhibits STAT3 activation, enhancing autophagy and apoptosis in orthotopic rat glioblastomas. Oncotarget. 2016;7(46):75790-75799. doi: 10.18632/oncotarget.12414

 

  1. Huang Z, Yu P, Tang J. Characterization of triple-negative breast cancer MDA-MB-231 cell spheroid model. Onco Targets Ther. 2020;13:5395-5405. doi: 10.2147/OTT.S249756

 

  1. Liu Y, Liu Y, Ye S, Feng H, Ma L. A new ferroptosis-related signature model including messenger RNAs and long non-coding RNAs predicts the prognosis of gastric cancer patients. J Transl Int Med. 2023;11(2):145-155. doi: 10.2478/jtim-2023-0089

 

  1. Jiang L, Chen T, Xiong L, et al. Knockdown of m6A methyltransferase METTL3 in gastric cancer cells results in suppression of cell proliferation. Oncol Lett. 2020;20(3):2191-2198. doi: 10.3892/ol.2020.11794

 

  1. Lu Y, Lin Z, Wen L, et al. The adaptation and acceptance of defocus incorporated multiple segment lens for Chinese children. Am J Ophthalmol. 2020;211:207-216. doi: 10.1016/j.ajo.2019.12.002

 

  1. Peng Y, Wang Y, Zhou C, Mei W, Zeng C. PI3K/Akt/mTOR pathway and its role in cancer therapeutics: Are we making headway? Front Oncol. 2022;12:819128. doi: 10.3389/fonc.2022.819128

 

  1. Wen L, Cao Y, Cheng Q, et al. Objectively measured near work, outdoor exposure and myopia in children. Br J Ophthalmol. 2020;104(11):1542-1547. doi: 10.1136/bjophthalmol-2019-315258

 

  1. Yu W, Qin X, Zhang Y, et al. Curcumin suppresses doxorubicin-induced cardiomyocyte pyroptosis via a PI3K/ Akt/mTOR-dependent manner. Cardiovasc Diagn Ther. 2020;10(4):752-769. doi: 10.21037/cdt-19-707

 

  1. Xu P, Fu G, Zhao H, et al. Review of molecular biological research on the treatment of membranous nephropathy with Tripterygium glycosides based on TCM theory. Medicine (Baltimore). 2023;102(45):e34686. doi: 10.1097/MD.0000000000034686

 

  1. Yang Z, Li J, Song H, et al. Unraveling the molecular links between benzopyrene exposure, NASH, and HCC: An integrated bioinformatics and experimental study. Sci Rep. 2023;13(1):20520. doi: 10.1038/s41598-023-46440-1

 

  1. Kraboth Z, Kalman B. ß-Adrenoreceptors in human cancers. Int J Mol Sci. 2023;24(4):3671. doi: 10.3390/ijms24043671

 

  1. Wong SC, Kamarudin MNA, Naidu R. Anticancer mechanism of curcumin on human glioblastoma. Nutrients. 2021;13(3):950. doi: 10.3390/nu13030950

 

  1. Maacha S, Bhat AA, Jimenez L, et al. Extracellular vesicles-mediated intercellular communication: Roles in the tumor microenvironment and anti-cancer drug resistance. Mol Cancer. 2019;18(1):55. doi: 10.1186/s12943-019-0965-7

 

  1. Kim HJ, Park JW, Lee JH. Genetic architectures and cell-of-origin in glioblastoma. Front Oncol. 2021;10:615400. doi: 10.3389/fonc.2020.615400

 

  1. Ahir BK, Engelhard HH, Lakka SS. Tumor development and angiogenesis in adult brain tumor: Glioblastoma. Mol Neurobiol. 2020;57(5):2461-2478. doi: 10.1007/s12035-020-01892-8

 

  1. Zhang C, Wang X, Li X, et al. Targeting the IGF2BP3-SEMA3A axis inhibits angiogenesis in glioblastoma. J Clin Invest. 2022;132(10):e154536.

 

  1. Fu W, Hou X, Dong L, Hou W. Roles of STAT3 in the pathogenesis and treatment of glioblastoma. Front Cell Dev Biol. 2023; 11: 1098482. doi:10.3389/fcell.2023.1098482

 

  1. Sung H, Hyland PL, Pemov A, et al. Genome-wide association study of café-au-lait macule number in neurofibromatosis type 1. Mol Genet Genomic Med. 2020;8(10):e1400. doi: 10.1002/mgg3.1400

 

  1. Garg A, Pal D. Exploring the use of molecular dynamics in assessing protein variants for phenotypic alterations. Hum Mutat. 2019;40(9):1424-1435. doi: 10.1002/humu.23800

 

  1. Wang Y, Jiang Y, Zhang M, et al. Regulation of SEMA3G by IGF2BP3 promotes glioblastoma progression through PI3K-AKT signaling. Neuro Oncol. 2021;23(12):2089-2102.

 

  1. Huang Q, Lian C, Dong Y, et al. SNAP25 inhibits glioma progression by regulating synapse plasticity via GLS-mediated glutaminolysis. Front Oncol. 2021;11:698835. doi: 10.3389/fonc.2021.698835

 

  1. Jiang K, Yao G, Hu L, et al. MOB2 suppresses GBM cell migration and invasion via regulation of FAK/Akt and cAMP/PKA signaling. Cell Death Dis. 2020;11(4):230. doi: 10.1038/s41419-020-2381-8

 

  1. Tsai CH, Chuang YM, Li X, et al. Immunoediting instructs tumor metabolic reprogramming to support immune evasion. Cell Metab. 2023;35(1):118-133.e7. doi: 10.1016/j.cmet.2022.12.003

 

  1. Yao M, Fu L, Liu X, Zheng D. In-silico multi-omics analysis of the functional significance of calmodulin 1 in multiple cancers. Front Genet. 2022;12:793508. doi: 10.3389/fgene.2021.793508

 

  1. Colomer J, Agell N, Engel P, Bachs O. Expression of calmodulin and calmodulin binding proteins in lymphoblastoid cells. J Cell Physiol. 1994;159(3):542-550. doi: 10.1002/jcp.1041590318

 

  1. Di L, Gu M, Wu Y, et al. SNAP25 is a potential prognostic biomarker for prostate cancer. Cancer Cell Int. 2022;22(1):144. doi: 10.1186/s12935-022-02558-2

 

  1. Moen LV, Sener Z, Volchenkov R, et al. Ablation of the Cβ2 subunit of PKA in immune cells leads to increased susceptibility to systemic inflammation in mice. Eur J Immunol. 2017;47(11):1880-1889. doi: 10.1002/eji.201646809

 

  1. Franco-Juárez EX, González-Villasana V, Camacho- Moll ME, et al. Mechanistic insights about sorafenib-, valproic acid- and metformin-induced cell death in hepatocellular carcinoma. Int J Mol Sci. 2024; 25(3):1760. doi: 10.3390/ijms25031760

 

  1. Cai Z, Lim D, Liu G, et al. Valproic acid-like compounds enhance and prolong the radiotherapy effect on breast cancer by activating and maintaining anti-tumor immune function. Front Immunol. 2021;12:646384. doi: 10.3389/fimmu.2021.646384

 

  1. Duenas-Gonzalez A, Candelaria M, Perez-Plascencia C, Perez-Cardenas E, de la Cruz-Hernandez E, Herrera LA. Valproic acid as epigenetic cancer drug: Preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat Rev. 2008;34(3):206-222. doi: 10.1016/j.ctrv.2007.11.003

 

  1. Tsai HC, Wei KC, Chen PY, et al. Valproic acid enhanced temozolomide-induced anticancer activity in human glioma through the p53-PUMA apoptosis pathway. Front Oncol. 2021;11:722754. doi: 10.3389/fonc.2021.722754

 

  1. Sun J, Piao J, Li N, Yang Y, Kim KY, Lin Z. Valproic acid targets HDAC1/2 and HDAC1/PTEN/Akt signalling to inhibit cell proliferation via the induction of autophagy in gastric cancer. FEBS J. 2020;287(10):2118-2133. doi: 10.1111/febs.15122
Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing