AccScience Publishing / EJMO / Online First / DOI: 10.36922/ejmo.8318
REVIEW ARTICLE

The role of gut microbiome in obesity and metabolic dysfunctions: Insights and therapeutic potential

Siham El Moussaoui1* Touria Derkaoui1,2 Fatima Zahrae Alaoui Ismaili1 Nezha Tawfiq3 Mohammed El Mzibri4 Abdelilah Laraqui5 Mohamed Mansouri1,6 Amina Barakat1 Naima Ghailani Nourouti1 Maria Paz Weisshaar7 Mohcine Bennani Mechita1
Show Less
1 Intelligent Automation and BioMed Genomics Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaâdi University, Tétouan, Morocco
2 Higher Institute of Nursing Professions and Health Techniques of Tangier, Ministry of Health,Tangier, Morocco
3 Mohammed VI Center for Cancer Treatment, Ibn Rochd University Hospital, Hassan II University, Casablanca, Morocco
4 Biology and Medical Research Unit, National Centre for Energy, Nuclear Sciences and Techniques (CNESTEN), Rabat, Morocco
5 Sequencing Unit, Center of Virology, Infectious and Tropical Diseases, Mohammed V Military Teaching Hospital, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
6 Oncology Clinic, Al Amal of Tangier, Morocco
7 Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg, Rheinbach, Germany
Submitted: 31 December 2024 | Revised: 28 January 2025 | Accepted: 18 February 2025 | Published: 24 March 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Obesity is a chronic inflammatory disease defined by an excessive accumulation of body fat. The human gut microbiota (GM) is an intricate ecosystem of microorganisms living symbiotically within the gastrointestinal tract and has emerged as a key player in health and metabolic diseases. Recently, several studies have increasingly revolved around understanding the specific compositions and strains of GM and their potential impact on obesity. This review provides a summary of the most recent findings regarding obesity and newly developed therapies that show exceptional efficacy in treating this condition. In addition, it explores different GM strains that may contribute to the progression and development of obesity. This article summarizes the molecular insights involved in the relationship between obesity and GM, the characteristics of this ecosystem, and its involvement in human metabolism, energy balance, and inflammation leading to obesity. Furthermore, it examines the bacteria most engaged in managing obesity. These findings contribute to a better understanding of this significant and intricate relationship, ultimately aiding in obesity prevention.

Keywords
Microbiota
Weight loss
Weight gain
Obesity
Diversity
Gut microbiome
Funding
The authors would like to thank the Moroccan Ministry of Higher Education, Scientific Research and Innovation, as well as the OCP Foundation for funding this work through the APRD Research Program. Dr. Siham El Moussaoui was awarded a scholarship from Mohammed VI Polytechnic University of Benguerir during the preparation of this literature review. The scholarship provided financial support throughout the 3-year duration of the doctoral studies, enabling the execution of the content or interpretation of this review.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Barros G, Duran P, Vera I, Bermúdez V. Exploring the links between obesity and psoriasis: A comprehensive review. Int J Mol Sci. 2022;23(14):7499. doi: 10.3390/ijms23147499

 

  1. Guo Z, Yang Y, Liao Y, Shi Y, Zhang LJ. Emerging roles of adipose tissue in the pathogenesis of psoriasis and atopic dermatitis in obesity. JID Innov. 2022;2(1):100064. doi: 10.1016/j.xjidi.2021.100064

 

  1. Yang M, Liu S, Zhang C. The related metabolic diseases and treatments of obesity. Healthcare. 2022;10(9):1616. doi: 10.3390/healthcare10091616

 

  1. Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307(5717):1915-1920. doi: 10.1126/science.1104816

 

  1. Satam H, Joshi K, Mangrolia U, et al. Next-generation sequencing technology: Current trends and advancements. Biology. 2023;12(7):997. doi: 10.3390/biology12070997

 

  1. Chansa O, Shantavasinkul PC, Monsuwan W, Sirivarasai J. Association between gut microbiota profiles, dietary intake, and inflammatory markers in overweight and obese women. Foods. 2024;13(16):2592. doi: 10.3390/foods13162592

 

  1. Busch CBE, Bergman JJGHM, Nieuwdorp M, van Baar ACG. Role of the intestine and its gut microbiota in metabolic syndrome and obesity. Am J Gastroenterol. 2024;119(6):1038. doi: 10.14309/ajg.0000000000002730

 

  1. Sergeev IN, Aljutaily T, Walton G, Huarte E. Effects of synbiotic supplement on human gut microbiota, body composition and weight loss in obesity. Nutrients. 2020;12(1):222. doi: 10.3390/nu12010222

 

  1. Liu BN, Liu XT, Liang ZH, Wang JH. Gut microbiota in obesity. World J Gastroenterol. 2021;27(25):3837-3850. doi: 10.3748/wjg.v27.i25.3837

 

  1. Koliada A, Syzenko G, Moseiko V, et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017;17:120. doi: 10.1186/s12866-017-1027-1

 

  1. Depommier C, Everard A, Druart C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study. Nat Med. 2019;25(7):1096-1103. doi: 10.1038/s41591-019-0495-2

 

  1. Candelli M, Franza L, Pignataro G, et al. Interaction between lipopolysaccharide and gut microbiota in inflammatory bowel diseases. Int J Mol Sci. 2021;22(12):6242. doi: 10.3390/ijms22126242

 

  1. Mohammad S, Thiemermann C. Role of metabolic endotoxemia in systemic inflammation and potential interventions. Front Immunol. 2021;11:594150. doi: 10.3389/fimmu.2020.594150

 

  1. Shoji M, Sasaki Y, Abe Y, et al. Characteristics of the gut microbiome profile in obese patients with colorectal cancer. JGH Open. 2021;5(4):498-507. doi: 10.1002/jgh3.12529

 

  1. Yuan Y, Liu K, Zheng M, et al. Analysis of changes in weight, waist circumference, or both, and all-cause mortality in Chinese adults. JAMA Netw Open. 2022;5(8):e2225876. doi: 10.1001/jamanetworkopen.2022.25876

 

  1. GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377(1):13-27. doi: 10.1056/NEJMoa1614362

 

  1. Rosen H. Is obesity a disease or a behavior abnormality? Did the AMA get it right? Mo Med. 2014;111(2):104-108.

 

  1. Kivimäki M, Strandberg T, Pentti J, et al. Body-mass index and risk of obesity-related complex multimorbidity: An observational multicohort study. Lancet Diabetes Endocrinol. 2022;10(4):253-263. doi: 10.1016/S2213-8587(22)00033-X

 

  1. One in Eight People are Now Living with Obesity. Available from: https://www.who.int/news/item/01-03-2024-one-in-eight-people-are-now-living-with-obesity [Last accessed on 2024 Dec 05].

 

  1. Lobstein T, Jackson-Leach R, Powis J, et al. World Obesity Day Atlases Obesity Atlas 2023. World Obesity Federation Global Obesity Observatory; 2023. Available from: https:// data.worldobesity.org/publications/?cat=19 [Last accessed on 2024 May 23].

 

  1. Organisation Mondiale de la Santé : Rapport du Directeur Général. Document A76/7 Add.1 Rev.1. Assemblée Mondiale de la Santé, 76e Session ; 2023. Available from: https://apps. who.int/gb/ebwha/pdf_files/wha76/a76_7add1rev1-fr. pdf?utm_source=chatgpt.com [Last accessed on 2024 Dec 05].

 

  1. WHO European Regional Obesity Report 2022. Available from: https://www.who.int/europe/publications/i/ item/9789289057738 [Last accessed on 2024 Apr 01].

 

  1. Obesity and Overweight 2022. Available from: https:// www.who.int/news-room/fact-sheets/detail/obesity-and-overweight [Last accessed on 2024 Dec 13].

 

  1. WHO. Obesity and Overweight; 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight [Last accessed on 2023 Oct 14].

 

  1. Riaz H, Khan MS, Siddiqi TJ, et al. Association between obesity and cardiovascular outcomes. JAMA Netw Open. 2018;1(7):e183788. doi: 10.1001/jamanetworkopen.2018.3788

 

  1. Coronary Heart Disease -What is Coronary Heart Disease? NHLBI, NIH; 2022. https://www.nhlbi.nih.gov/health/ coronary-heart-disease [Last accessed on 2023 Nov 27].

 

  1. Seeberg KA, Hofsø D, Borgeraas H, et al. Association between hepatic steatosis and fibrosis with measures of insulin sensitivity in patients with severe obesity and type 2 diabetes - a cross-sectional study. BMC Gastroenterol. 2022;22(1):448. doi: 10.1186/s12876-022-02550-0

 

  1. Oussaada SM, van Galen KA, Cooiman MI, et al. The pathogenesis of obesity. Metabolism. 2019;92:26-36. doi: 10.1016/j.metabol.2018.12.012

 

  1. Loos RJF, Yeo GSH. The genetics of obesity: From discovery to biology. Nat Rev Genet. 2022;23(2):120-133. doi: 10.1038/s41576-021-00414-z

 

  1. van der Sande MA, Walraven GE, Milligan PJ, et al. Family history: An opportunity for early interventions and improved control of hypertension, obesity and diabetes. Bull World Health Organ. 2001;79(4):321-328.

 

  1. Corica D, Aversa T, Valenzise M, et al. Does family history of obesity, cardiovascular, and metabolic diseases influence onset and severity of childhood obesity? Front Endocrinol. 2018;9:187. doi: 10.3389/fendo.2018.00187

 

  1. Heslehurst N, Vieira R, Akhter Z, et al. The association between maternal body mass index and child obesity: A systematic review and meta-analysis. PLoS Med. 2019;16(6):e1002817. doi: 10.1371/journal.pmed.1002817

 

  1. Cooper CB, Neufeld EV, Dolezal BA, Martin JL. Sleep deprivation and obesity in adults: A brief narrative review. BMJ Open Sport Exerc Med. 2018;4(1):e000392. doi: 10.1136/bmjsem-2018-000392

 

  1. Pepe RB, Coelho GS de MA, Miguel FS, et al. Mindful eating for weight loss in women with obesity: A randomised controlled trial. Br J Nutr. 2023;130(5):911-920. doi: 10.1017/S0007114522003932

 

  1. Sukkriang N, Buranapin S. Effect of intermittent fasting 16:8 and 14:10 compared with control-group on weight reduction and metabolic outcomes in obesity with type 2 diabetes patients: A randomized controlled trial. J Diabetes Investig. 2024;15(9):1297-1305. doi: 10.1111/jdi.14186

 

  1. Xie Z, Sun Y, Ye Y, et al. Randomized controlled trial for time-restricted eating in healthy volunteers without obesity. Nat Commun. 2022;13(1):1003. doi: 10.1038/s41467-022-28662-5

 

  1. Maruthur NM, Pilla SJ, White K, et al. Effect of isocaloric, time-restricted eating on body weight in adults with obesity : A randomized controlled trial. Ann Intern Med. 2024;177(5):549-558. doi: 10.7326/M23-3132

 

  1. Imai S, Kajiyama S, Kitta K, et al. Eating vegetables first regardless of eating speed has a significant reducing effect on postprandial blood glucose and insulin in young healthy women: Randomized controlled cross-over study. Nutrients. 2023;15(5):1174. doi: 10.3390/nu15051174

 

  1. Bensignor MO, Kelly AS, Kunin-Batson A, et al. Evaluating appetite/satiety hormones and eating behaviours as predictors of weight loss maintenance with GLP-1RA therapy in adolescents with severe obesity. Pediatr Obes. 2024;19(5):e13105. doi: 10.1111/ijpo.13105

 

  1. Lemamsha H, Papadopoulos C, Randhawa G. Understanding the risk and protective factors associated with obesity amongst Libyan adults - a qualitative study. BMC Public Health. 2018;18(1):493. doi: 10.1186/s12889-018-5411-z

 

  1. Zheng M, Lamb KE, Grimes C, et al. Rapid weight gain during infancy and subsequent adiposity: A systematic review and meta-analysis of evidence. Obes Rev. 2018;19(3):321-332. doi: 10.1111/obr.12632

 

  1. Wharton S, Raiber L, Serodio KJ, Lee J, Christensen RA. Medications that cause weight gain and alternatives in Canada: A narrative review. Diabetes Metab Syndr Obes. 2018;11:427-438. doi: 10.2147/DMSO.S171365

 

  1. Morąg B, Kozubek P, Gomułka K. Obesity and selected allergic and immunological diseases-etiopathogenesis, course and management. Nutrients. 2023;15(17):3813. doi: 10.3390/nu15173813

 

  1. Hoogwerf BJ, Nuttall FQ. Long-term weight regulation in treated hyperthyroid and hypothyroid subjects. Am J Med. 1984;76(6):963-970. doi: 10.1016/0002-9343(84)90842-8

 

  1. Danforth E, Horton ES, O’Connell M, et al. Dietary-induced alterations in thyroid hormone metabolism during overnutrition. J Clin Invest. 1979;64(5):1336-1347. doi: 10.1172/JCI109590

 

  1. Knudsen N, Laurberg P, Rasmussen LB, et al. Small differences in thyroid function may be important for body mass index and the occurrence of obesity in the population. J Clin Endocrinol Metab. 2005;90(7):4019-4024. doi: 10.1210/jc.2004-2225

 

  1. Alevizaki M, Saltiki K, Voidonikola P, Mantzou E, Papamichael C, Stamatelopoulos K. Free thyroxine is an independent predictor of subcutaneous fat in euthyroid individuals. Eur J Endocrinol. 2009;161(3):459-465. doi: 10.1530/EJE-09-0441

 

  1. Reinehr T. Obesity and thyroid function. Mol Cell Endocrinol. 2010;316(2):165-171. doi: 10.1016/j.mce.2009.06.005

 

  1. Pojednic R, D’Arpino E, Halliday I, Bantham A. The benefits of physical activity for people with obesity, independent of weight loss: A systematic review. Int J Environ Res Public Health. 2022;19(9):4981. doi: 10.3390/ijerph19094981

 

  1. Xenaki N, Bacopoulou F, Kokkinos A, Nicolaides NC, Chrousos GP, Darviri C. Impact of a stress management program on weight loss, mental health and lifestyle in adults with obesity: A randomized controlled trial. J Mol Biochem. 2018;7(2):78-84.

 

  1. Kim SJ, de Souza RJ, Choo VL, et al. Effects of dietary pulse consumption on body weight: A systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr. 2016;103(5):1213-1223. doi: 10.3945/ajcn.115.124677

 

  1. Hosseini-Esfahani F, Koochakpoor G, Daneshpour MS, Mirmiran P, Sedaghati-Khayat B, Azizi F. The interaction of fat mass and obesity associated gene polymorphisms and dietary fiber intake in relation to obesity phenotypes. Sci Rep. 2017;7(1):18057. doi: 10.1038/s41598-017-18386-8

 

  1. Spencer CN, McQuade JL, Gopalakrishnan V, et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science. 2021;374(6575):1632-1640. doi: 10.1126/science.aaz7015

 

  1. Li H, Zhang L, Li J, et al. Resistant starch intake facilitates weight loss in humans by reshaping the gut microbiota. Nat Metab. 2024;6(3):578-597. doi: 10.1038/s42255-024-00988-y

 

  1. Riyaphan J, Pham DC, Leong MK, Weng CF. In silico approaches to identify polyphenol compounds as α-glucosidase and α-amylase inhibitors against type-II diabetes. Biomolecules. 2021;11(12):1877. doi: 10.3390/biom11121877

 

  1. Zouhal H, Bagheri R, Triki R, et al. Effects of Ramadan intermittent fasting on gut hormones and body composition in males with obesity. Int J Environ Res Public Health. 2020;17(15):5600. doi: 10.3390/ijerph17155600

 

  1. Unhapipatpong C, Polruang N, Shantavasinkul PC, Julanon N, Numthavaj P, Thakkinstian A. The effect of curcumin supplementation on weight loss and anthropometric indices: An umbrella review and updated meta-analyses of randomized controlled trials. Am J Clin Nutr. 2023;117(5):1005-1016. doi: 10.1016/j.ajcnut.2023.03.006

 

  1. Dehzad MJ, Ghalandari H, Nouri M, Askarpour M. Antioxidant and anti-inflammatory effects of curcumin/ turmeric supplementation in adults: A GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. Cytokine. 2023;164:156144. doi: 10.1016/j.cyto.2023.156144

 

  1. Portillo Siqueiros EY, Santellano-Estrada E, Flores Villalobos MÁ, Roacho Soto MG, Martínez Flórez S. Effects of zinc and resveratrol as modulators of leptin response in adults with obesity. Nutr Hosp. 2024;41(5):968-975. doi: 10.20960/nh.05177

 

  1. Jastreboff AM, Kaplan LM, Frías JP, et al. Triple-hormone-receptor agonist retatrutide for obesity-a phase 2 trial. N Engl J Med. 2023;389(6):514-526. doi: 10.1056/NEJMoa2301972

 

  1. Rosenstock J, Wysham C, Frías JP, et al. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): A double-blind, randomised, phase 3 trial. Lancet. 2021;398(10295):143-155. doi: 10.1016/S0140-6736(21)01324-6

 

  1. Tucker JAL, Bornath DPD, McCarthy SF, Hazell TJ. Leptin and energy balance: Exploring Leptin’s role in the regulation of energy intake and energy expenditure. Nutr Neurosci. 2024;27(1):87-95. doi: 10.1080/1028415X.2022.2161135

 

  1. Mandel SJ, Brent GA, Larsen PR. Levothyroxine therapy in patients with thyroid disease. Ann Intern Med. 1993;119(6):492-502. doi: 10.7326/0003-4819-119-6-199309150-00009

 

  1. Ruhla S, Arafat AM, Osterhoff M, et al. Levothyroxine medication is associated with adiposity independent of TSH. Exp Clin Endocrinol Diabetes. 2012;120(6):351-354. doi: 10.1055/s-0032-1312599

 

  1. Medici BR, Nygaard B, Cour JL, et al. Effects of levothyroxine substitution therapy on hunger and food intake in individuals with hypothyroidism. Endocr Connect. 2023;12:e230314. doi: 10.1530/EC-23-0314

 

  1. Knudsen LB, Lau J. The discovery and development of liraglutide and semaglutide. Front Endocrinol. 2019;10:155. doi: 10.3389/fendo.2019.00155

 

  1. Kosiborod MN, Petrie MC, Borlaug BA, et al. Semaglutide in patients with obesity-related heart failure and type 2 diabetes. N Engl J Med. 2024;390(15):1394-1407. doi: 10.1056/NEJMoa2313917

 

  1. Wilding JPH, Batterham RL, Calanna S, et al. Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med. 2021;384(11):989-1002. doi: 10.1056/NEJMoa2032183

 

  1. Zhou Q, Lei X, Fu S, et al. Efficacy and safety of tirzepatide, dual GLP-1/GIP receptor agonists, in the management of type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Diabetol Metab Syndr. 2023;15(1):222. doi: 10.1186/s13098-023-01198-4

 

  1. Raju NC, Yi Q, Nidorf M, Fagel ND, Hiralal R, Eikelboom JW. Effect of colchicine compared with placebo on high sensitivity C-reactive protein in patients with acute coronary syndrome or acute stroke: A pilot randomized controlled trial. J Thromb Thrombolysis. 2012;33(1):88-94. doi: 10.1007/s11239-011-0637-y

 

  1. Martínez GJ, Robertson S, Barraclough J, et al. Colchicine acutely suppresses local cardiac production of inflammatory cytokines in patients with an acute coronary syndrome. J Am Heart Assoc Cardiovasc Cerebrovasc Dis. 2015;4(8):e002128. doi: 10.1161/JAHA.115.002128

 

  1. Demidowich AP, Wolska A, Wilson SR, et al. Colchicine’s effects on lipoprotein particle concentrations in adults with metabolic syndrome: A secondary analysis of a randomized controlled trial. J Clin Lipidol. 2019;13(6):1016-1022.e2. doi: 10.1016/j.jacl.2019.10.011

 

  1. Patel TP, Levine JA, Elizondo DM, et al. Immunomodulatory effects of colchicine on PBMC subpopulations in human obesity: Data from a randomized controlled trial. Obesity (Silver Spring). 2023;31(2):466-478. doi: 10.1002/oby.23632

 

  1. UNC Carolina Population Center, Global Food Research Program. Sugary Drink Taxes around the World; 2021. Available from: https://www.globalfoodresearchprogram. org/wp-content/uploads/2021/09/sugarydrink_tax_maps_ ppts_2021_september.pdf [Last accessed on 2024 Dec 05].

 

  1. Andreyeva T, Marple K, Marinello S, Moore TE, Powell LM. Outcomes following taxation of sugar-sweetened beverages: A systematic review and meta-analysis. JAMA Netw Open. 2022;5(6):e2215276. doi: 10.1001/jamanetworkopen.2022.15276

 

  1. Itria A, Borges SS, Rinaldi AEM, Nucci LB, Enes CC. Taxing sugar-sweetened beverages as a policy to reduce overweight and obesity in countries of different income classifications: A systematic review. Public Health Nutr. 2021;24(16):5550-5560. doi: 10.1017/S1368980021002901

 

  1. Gebrayel P, Nicco C, Al Khodor S, et al. Microbiota medicine: Towards clinical revolution. J Transl Med. 2022;20(1):111. doi: 10.1186/s12967-022-03296-9

 

  1. Retnakumar RJ, Nath AN, Nair GB, Chattopadhyay S. Gastrointestinal microbiome in the context of Helicobacter pylori infection in stomach and gastroduodenal diseases. Prog Mol Biol Transl Sci. 2022;192(1):53-95. doi: 10.1016/bs.pmbts.2022.07.001

 

  1. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533. doi: 10.1371/journal.pbio.1002533

 

  1. Scheithauer TPM, Rampanelli E, Nieuwdorp M, et al. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front Immunol. 2020;11:571731. doi: 10.3389/fimmu.2020.571731

 

  1. Yun L, Li W, Wu T, Zhang M. Effect of sea cucumber peptides on the immune response and gut microbiota composition in ovalbumin-induced allergic mice. Food Funct. 2022;13(11):6338-6349. doi: 10.1039/d2fo00536k

 

  1. Amrane S, Hocquart M, Afouda P, et al. Metagenomic and culturomic analysis of gut microbiota dysbiosis during Clostridium difficile infection. Sci Rep. 2019;9(1):12807. doi: 10.1038/s41598-019-49189-8

 

  1. López-Moreno A, Acuña I, Torres-Sánchez A, et al. Next generation probiotics for neutralizing obesogenic effects: Taxa culturing searching strategies. Nutrients. 2021;13(5):1617. doi: 10.3390/nu13051617

 

  1. Kuziel GA, Rakoff-Nahoum S. The gut microbiome. Curr Biol. 2022;32(6):R257-R264. doi: 10.1016/j.cub.2022.02.023

 

  1. Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol. 2012;9(10):577-589. doi: 10.1038/nrgastro.2012.156

 

  1. Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol. 2016;14(1):20-32. doi: 10.1038/nrmicro3552

 

  1. Gu S, Chen D, Zhang JN, et al. Bacterial community mapping of the mouse gastrointestinal tract. PLoS One. 2013;8(10):e74957. doi: 10.1371/journal.pone.0074957

 

  1. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207-214. doi: 10.1038/nature11234

 

  1. Cheng J, Palva AM, de Vos WM, Satokari R. Contribution of the intestinal microbiota to human health: From birth to 100 years of age. In: Dobrindt U, Hacker JH, Svanborg C, editors. Between Pathogenicity and Commensalism. Current Topics in Microbiology and Immunology. Vol. 358. Berlin, Heidelberg: Springer; 2011. p. 323-346. doi: 10.1007/82_2011_189

 

  1. Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr. 1999;69(5):1035S-1045S. doi: 10.1093/ajcn/69.5.1035s

 

  1. Rodríguez JM, Murphy K, Stanton C, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015;26:26050. doi: 10.3402/mehd.v26.26050

 

  1. Satokari R, Grönroos T, Laitinen K, Salminen S, Isolauri E. Bifidobacterium and Lactobacillus DNA in the human placenta. Lett Appl Microbiol. 2009;48(1):8-12. doi: 10.1111/j.1472-765X.2008.02475.x

 

  1. Bakardjiev AI, Theriot JA, Portnoy DA. Listeria monocytogenes traffics from maternal organs to the placenta and back. PLoS Pathog. 2006;2(6):e66. doi: 10.1371/journal.ppat.0020066

 

  1. Penders J, Thijs C, Vink C, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118(2):511-521. doi: 10.1542/peds.2005-2824

 

  1. Fanaro S, Chierici R, Guerrini P, Vigi V. Intestinal microflora in early infancy: Composition and development. Acta Paediatr. 2003;92(s441):48-55. doi: 10.1111/j.1651-2227.2003.tb00646.x

 

  1. Hällström M, Eerola E, Vuento R, Janas M, Tammela O. Effects of mode of delivery and necrotising enterocolitis on the intestinal microflora in preterm infants. Eur J Clin Microbiol Infect Dis. 2004;23(6):463-470. doi: 10.1007/s10096-004-1146-0

 

  1. Stark PL, Lee A. The microbial ecology of the large bowel of breastfed and formula-fed infants during the first year of life. J Med Microbiol. 1982;15(2):189-203. doi: 10.1099/00222615-15-2-189

 

  1. Favier CF, Vaughan EE, De Vos WM, Akkermans ADL. Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol. 2002;68(1):219-226. doi: 10.1128/AEM.68.1.219-226.2002

 

  1. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5(7):e177. doi: 10.1371/journal.pbio.0050177

 

  1. Shama S, Asbury MR, Kiss A, et al. Mother’s milk microbiota is associated with the developing gut microbial consortia in very-low-birth-weight infants. Cell Rep Med. 2024;5(9):101729. doi: 10.1016/j.xcrm.2024.101729

 

  1. Tamburini S, Shen N, Wu HC, Clemente JC. The microbiome in early life: Implications for health outcomes. Nat Med. 2016;22(7):713-722. doi: 10.1038/nm.4142

 

  1. Gai Z, Dong Y, Xu F, Zhang J, Yang Y, Wang Y. Changes in the gut microbiota composition of healthy young volunteers after administration of Lacticaseibacillus rhamnosus LRa05: A placebo-controlled study. Front Nutr. 2023;10:1105964. doi: 10.3389/fnut.2023.1105694

 

  1. Allali I, Boukhatem N, Bouguenouch L, et al. Gut microbiome of Moroccan colorectal cancer patients. Med Microbiol Immunol (Berl). 2018;207(3):211-225. doi: 10.1007/s00430-018-0542-5

 

  1. Chen L, Liu B, Ren L, et al. High-fiber diet ameliorates gut microbiota, serum metabolism and emotional mood in type 2 diabetes patients. Front Cell Infect Microbiol. 2023;13:1069954. doi: 10.3389/fcimb.2023.1069954

 

  1. De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691-14696. doi: 10.1073/pnas.1005963107

 

  1. Mohammadi Z, Bishehsari F, Masoudi S, et al. Association between sleeping patterns and mealtime with gut microbiome: A pilot study. Arch Iran Med. 2022;25(5):279-284. doi: 10.34172/aim.2022.46

 

  1. Varghese S, Rao S, Khattak A, Zamir F, Chaari A. Physical exercise and the gut microbiome: A bidirectional relationship influencing health and performance. Nutrients. 2024;16(21):3663. doi: 10.3390/nu16213663

 

  1. Machado ACD, Singh S, Muti VB, Richter RA, Zarrinpar A. The human gut microbiome displays diurnal and seasonal rhythmic patterns. Gastroenterology. 2023;164:S71.

 

  1. Koliada A, Moseiko V, Romanenko M, et al. Seasonal variation in gut microbiota composition: Cross-sectional evidence from Ukrainian population. BMC Microbiol. 2020;20(1):100. doi: 10.1186/s12866-020-01786-8

 

  1. Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635-1638. doi: 10.1126/science.1110591

 

  1. Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222-227. doi: 10.1038/nature11053

 

  1. Sasaki M, Klapproth JMA. The role of bacteria in the pathogenesis of ulcerative colitis. J Signal Transduct. 2012;2012(1):704953. doi: 10.1155/2012/704953

 

  1. Soltys K, Stuchlikova M, Hlavaty T, et al. Seasonal changes of circulating 25-hydroxyvitamin D correlate with the lower gut microbiome composition in inflammatory bowel disease patients. Sci Rep. 2020;10(1):6024. doi: 10.1038/s41598-020-62811-4

 

  1. Naderpoor N, Mousa A, Fernanda Gomez Arango L, Barrett HL, Dekker Nitert M, de Courten B. Effect of Vitamin D supplementation on faecal microbiota: A randomised clinical trial. Nutrients. 2019;11(12):2888. doi: 10.3390/nu11122888

 

  1. Levy K, Hubbard AE, Eisenberg JN. Seasonality of rotavirus disease in the tropics: A systematic review and meta-analysis. Int J Epidemiol. 2009;38(6):1487-1496. doi: 10.1093/ije/dyn260

 

  1. BIOFIRE® Syndromic Trends. Available from: https:// syndromictrends.com [Last accessed on 2024 Dec 13.

 

  1. BioFire® Syndromic Trends: Epidemiology Tool. BioFire Diagnostics. Available from: https://www.biofiredx.com/ products/filmarray/biofire-syndromic-trends [Last accessed on 2024 Dec 13.

 

  1. Abraham P, Pratap N. Dysbiosis in irritable bowel syndrome. J Assoc Physicians India. 2023;71(9):75-81. doi: 10.59556/japi.71.0353

 

  1. Nesci A, Carnuccio C, Ruggieri V, et al. Gut microbiota and cardiovascular disease: Evidence on the metabolic and inflammatory background of a complex relationship. Int J Mol Sci. 2023;24(10):9087. doi: 10.3390/ijms24109087

 

  1. Lv J, Wang J, Yu Y, et al. Alterations of gut microbiota are associated with blood pressure: A cross-sectional clinical trial in Northwestern China. J Transl Med. 2023;21(1):429. doi: 10.1186/s12967-023-04176-6

 

  1. Rowaiye A, Ibeanu GC, Bur D, Nnadi S, Mgbeke OE, Morikwe U. Gut microbiota alteration - Cancer relationships and synbiotic roles in cancer therapies. The Microbe. 2024;4:100096. doi: 10.1016/j.microb.2024.100096

 

  1. Arteaga-Muller GY, Flores-Treviño S, Bocanegra-Ibarias P, et al. Changes in the progression of chronic kidney disease in patients undergoing fecal microbiota transplantation. Nutrients. 2024;16(8):1109. doi: 10.3390/nu16081109

 

  1. Ryguła I, Pikiewicz W, Grabarek BO, Wójcik M, Kaminiów K. The role of the gut microbiome and microbial dysbiosis in common skin diseases. Int J Mol Sci. 2024;25(4):1984. doi: 10.3390/ijms25041984

 

  1. Gasmi A, Bjørklund G, Mujawdiya PK, et al. Gut microbiota in bariatric surgery. Crit Rev Food Sci Nutr. 2023;63(28):9299-9314. doi: 10.1080/10408398.2022.2067116

 

  1. Lee JY, Bays DJ, Savage HP, Bäumler AJ. The human gut microbiome in health and disease: Time for a new chapter? Infect Immun. 2024;92:e0030224. doi: 10.1128/iai.00302-24

 

  1. Meng Y, Zhang X, Zhai Y, et al. Identification of the mutual gliding locus as a factor for gut colonization in non-native bee hosts using the ARTP mutagenesis. Microbiome. 2024;12(1):93. doi: 10.1186/s40168-024-01813-0

 

  1. Matsuoka K, Kanai T. The gut microbiota and inflammatory bowel disease. Semin Immunopathol. 2015;37(1):47-55. doi: 10.1007/s00281-014-0454-4

 

  1. Zhang X, Luo X, Tian L, et al. The gut microbiome dysbiosis and regulation by fecal microbiota transplantation: Umbrella review. Front Microbiol. 2023;14:1286429. doi: 10.3389/fmicb.2023.1286429

 

  1. Xue L, Deng Z, Luo W, He X, Chen Y. Effect of fecal microbiota transplantation on non-alcoholic fatty liver disease: A randomized clinical trial. Front Cell Infect Microbiol. 2022;12:759306. doi: 10.3389/fcimb.2022.759306

 

  1. Fecal Microbiota Transplant from Healthy Lean Donors to Individuals with Obesity: Effect on Insulin Resistance, Metabolic Parameters, Appetite and Metabolites -ProQuest. Available from: https://www.proquest.com/openview/ed91 36d0defb5a138027def93d914367/1?pq-origsite=gscholar&c bl=18750&diss=y [Last accessed on 2024 Dec 20.

 

  1. Scheperjans F, Levo R, Bosch B, et al. Fecal microbiota transplantation for treatment of Parkinson disease: A randomized clinical trial. JAMA Neurol. 2024;81(9):925-938. doi: 10.1001/jamaneurol.2024.2305

 

  1. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121-141. doi: 10.1016/j.cell.2014.03.011

 

  1. Weger BD, Gobet C, Yeung J, et al. The mouse microbiome is required for sex-specific diurnal rhythms of gene expression and metabolism. Cell Metab. 2019;29(2):362-382.e8. doi: 10.1016/j.cmet.2018.09.023

 

  1. Savage DC, Siegel JE, Snellen JE, Whitt DD. Transit time of epithelial cells in the small intestines of germfree mice and ex-germfree mice associated with indigenous microorganisms. Appl Environ Microbiol. 1981;42(6):996-1001. doi: 10.1128/aem.42.6.996-1001.1981

 

  1. Hanssen NMJ, de Vos WM, Nieuwdorp M. Fecal microbiota transplantation in human metabolic diseases: From a murky past to a bright future? Cell Metab. 2021;33(6):1098-1110. doi: 10.1016/j.cmet.2021.05.005

 

  1. Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718-15723. doi: 10.1073/pnas.0407076101

 

  1. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-1031. doi: 10.1038/nature05414

 

  1. Ye W, Fan J, Wu W, Chen Z, Huang Q, Qian L. Effects of fecal microbiota transplantation on metabolic health of DBA mice. Front Microbiol. 2024;15:1352555. doi: 10.3389/fmicb.2024.1352555

 

  1. Ghorbani Y, Schwenger KJP, Sharma D, et al. Effect of faecal microbial transplant via colonoscopy in patients with severe obesity and insulin resistance: A randomized double-blind, placebo-controlled Phase 2 trial. Diabetes Obes Metab. 2023;25(2):479-490. doi: 10.1111/dom.14891

 

  1. Mocanu V, Zhang Z, Deehan EC, et al. Fecal microbial transplantation and fiber supplementation in patients with severe obesity and metabolic syndrome: A randomized double-blind, placebo-controlled phase 2 trial. Nat Med. 2021;27(7):1272-1279. doi: 10.1038/s41591-021-01399-2

 

  1. Yu EW, Gao L, Stastka P, et al. Fecal microbiota transplantation for the improvement of metabolism in obesity: The FMT-TRIM double-blind placebo-controlled pilot trial. PLoS Med. 2020;17(3):e1003051. doi: 10.1371/journal.pmed.1003051

 

  1. Allegretti JR, Kassam Z, Mullish BH, et al. Effects of fecal microbiota transplantation with oral capsules in obese patients. Clin Gastroenterol Hepatol. 2020;18(4):855-863.e2. doi: 10.1016/j.cgh.2019.07.006

 

  1. Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. 2007;104(3):979-984. doi: 10.1073/pnas.0605374104

 

  1. Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40(1):128-139. doi: 10.1016/j.immuni.2013.12.007

 

  1. Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2017;19(1):29-41. doi: 10.1111/1462-2920.13589

 

  1. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: Human gut microbes associated with obesity. Nature. 2006;444(7122):1022-1023. doi: 10.1038/4441022a

 

  1. Bell DSH. Changes seen in gut bacteria content and Med. 2015;127(8):863-868. doi: 10.1080/00325481.2015.1098519

 

  1. Ng SC, Xu Z, Mak JWY, et al. Microbiota engraftment after faecal microbiota transplantation in obese subjects with type 2 diabetes: A 24-week, double-blind, randomised controlled trial. Gut. 2022;71(4):716-723. doi: 10.1136/gutjnl-2020-323617

 

  1. Rasmussen TS, Mentzel CMJ, Kot W, et al. Faecal virome transplantation decreases symptoms of type 2 diabetes and obesity in a murine model. Gut. 2020;69:2122-2130. doi: 10.1136/gutjnl-2019-320005

 

  1. Zhao L. The gut microbiota and obesity: From correlation to causality. Nat Rev Microbiol. 2013;11(9):639-647. doi: 10.1038/nrmicro3089

 

  1. Sonnenburg JL, Bäckhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016;535(7610):56-64. doi: 10.1038/nature18846

 

  1. Gomes AC, Hoffmann C, Mota JF. The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes. 2018;9(4):308-325. doi: 10.1080/19490976.2018.1465157

 

  1. Boscaini S, Leigh SJ, Lavelle A, et al. Microbiota and body weight control: Weight watchers within? Mol Metab. 2021;57:101427. doi: 10.1016/j.molmet.2021.101427

 

  1. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol. 2019;16(8):461-478. doi: 10.1038/s41575-019-0157-3

 

  1. Pascale A, Marchesi N, Marelli C, et al. Microbiota and metabolic diseases. Endocrine. 2018;61(3):357-371. doi: 10.1007/s12020-018-1605-5

 

  1. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332-1345. doi: 10.1016/j.cell.2016.05.041

 

  1. Chambers ES, Preston T, Frost G, Morrison DJ. Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr Nutr Rep. 2018;7(4):198-206. doi: 10.1007/s13668-018-0248-8

 

  1. Kennedy A, Martinez K, Schmidt S, Mandrup S, LaPoint K, McIntosh M. Antiobesity mechanisms of action of conjugated linoleic acid. J Nutr Biochem. 2010;21(3):171-179. doi: 10.1016/j.jnutbio.2009.08.003

 

  1. Wang Y, Wang H, Howard AG, et al. Circulating short-chain fatty acids are positively associated with adiposity measures in Chinese adults. Nutrients. 2020;12(7):2127. doi: 10.3390/nu12072127

 

  1. Martínez-Cuesta MC, del Campo R, Garriga-García M, Peláez C, Requena T. Taxonomic characterization and short-chain fatty acids production of the obese microbiota. Front Cell Infect Microbiol. 2021;11:598093. doi: 10.3389/fcimb.2021.598093

 

  1. Yamamura R, Nakamura K, Ukawa S, et al. Fecal short-chain fatty acids and obesity in a community-based Japanese population: The DOSANCO Health Study. Obes Res Clin Pract. 2021;15(4):345-350. doi: 10.1016/j.orcp.2021.06.003

 

  1. Farup PG, Valeur J. Changes in faecal short-chain fatty acids after weight-loss interventions in subjects with morbid obesity. Nutrients. 2020;12(3):802. doi: 10.3390/nu12030802

 

  1. Ecklu-Mensah G, Choo-Kang C, Maseng MG, et al. Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: The METS-microbiome study. Nat Commun. 2023;14:5160. doi: 10.1038/s41467-023-40874-x

 

  1. Barczyńska R, Litwin M, Sliżewska K, et al. Bacterial microbiota and fatty acids in the faeces of overweight and obese children. Pol J Microbiol. 2018;67(3):339-345. doi: 10.21307/pjm-2018-041

 

  1. Fang W, Xue H, Chen X, Chen K, Ling W. Supplementation with sodium butyrate modulates the composition of the gut microbiota and ameliorates high-fat diet-induced obesity in mice. J Nutr. 2019;149(5):747-754. doi: 10.1093/jn/nxy324

 

  1. Boets E, Gomand SV, Deroover L, et al. Systemic availability and metabolism of colonic‐derived short‐chain fatty acids in healthy subjects: A stable isotope study. J Physiol. 2017;595(2):541-555. doi: 10.1113/JP272613

 

  1. den Besten G, Bleeker A, Gerding A, et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes. 2015;64(7):2398-2408. doi: 10.2337/db14-1213

 

  1. Collins L, Costello RA. Glucagon-like peptide-1 receptor agonists. In: StatPearls. StatPearls Publishing; 2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK551568 [Last accessed on 2024 Dec 24.

 

  1. Senior M. After GLP-1, what’s next for weight loss? Nat Biotechnol. 2023;41(6):740-743. doi: 10.1038/s41587-023-01818-4

 

  1. Stinson LF, Geddes DT. Microbial metabolites: The next frontier in human milk. Trends Microbiol. 2022;30(5):408-410. doi: 10.1016/j.tim.2022.02.007

 

  1. Stinson LF, Gay MCL, Koleva PT, et al. Human milk from atopic mothers has lower levels of short chain fatty acids. Front Immunol. 2020;11:1427. doi: 10.3389/fimmu.2020.01427

 

  1. Xi M, Yan Y, Duan S, Li T, Szeto IMY, Zhao A. Short-chain fatty acids in breast milk and their relationship with the infant gut microbiota. Front Microbiol. 2024;15:1356462. doi: 10.3389/fmicb.2024.1356462

 

  1. Krolenko EV, Kupriyanova OV, Nigmatullina LS, Grigoryeva TV, Roumiantsev SA, Shestopalov AV. Changes of the concentration of short-chain fatty acids in the intestines of mice with different types of obesity. Bull Exp Biol Med. 2024;176(3):347-353. doi: 10.1007/s10517-024-06022-1

 

  1. Akhgarjand C, Tavakoli A, Samavat S, et al. The effect of conjugated linoleic acid supplementation in comparison with omega-6 and omega-9 on lipid profile: A graded, dose-response systematic review and meta-analysis of randomized controlled trials. Front Nutr. 2024;11:1336889. doi: 10.3389/fnut.2024.1336889

 

  1. Yu H, Zou ZX, Wei W, Li Y. Conjugated linoleic acid reduces lipid accumulation via down-regulation expression of lipogenic genes and up-regulation of apoptotic genes in grass carp (Ctenopharyngodon idella) adipocyte in vitro. Biotechnol. 2024;26(1):169-180. doi: 10.1007/s10126-024-10286-z

 

  1. Ryder JW, Portocarrero CP, Song XM, et al. Isomer-specific antidiabetic properties of conjugated linoleic acid. Improved glucose tolerance, skeletal muscle insulin action, and UCP-2 gene expression. Diabetes. 2001;50(5):1149-1157. doi: 10.2337/diabetes.50.5.1149

 

  1. Wang ZB, Xin SS, Ding LN, et al. The potential role of probiotics in controlling overweight/obesity and associated metabolic parameters in adults: A systematic review and meta-analysis. Evid Based Complement Altern Med. 2019;2019:3862971. doi: 10.1155/2019/3862971

 

  1. Wu L, Ye S, Deng X, Fu Z, Li J, Yang C. Conjugated linoleic acid ameliorates high fat-induced insulin resistance via regulating gut microbiota-host metabolic and immunomodulatory interactions. Nutrients. 2024;16(8):1133. doi: 10.3390/nu16081133

 

  1. Heianza Y, Zhou T, He H, et al. Changes in bile acid subtypes and long-term successful weight-loss in response to weight-loss diets: The POUNDS lost trial. Liver Int. 2022;42(2):363-373. doi: 10.1111/liv.15098

 

  1. Calderon G, McRae A, Rievaj J, et al. Ileo-colonic delivery of conjugated bile acids improves glucose homeostasis via colonic GLP-1-producing enteroendocrine cells in human obesity and diabetes. EBioMedicine. 2020;55:102759. doi: 10.1016/j.ebiom.2020.102759

 

  1. De Silva A, Bloom SR. Gut hormones and appetite control: A focus on PYY and GLP-1 as therapeutic targets in obesity. Gut Liver. 2012;6(1):10-20. doi: 10.5009/gnl.2012.6.1.10

 

  1. Mullish BH, Pechlivanis A, Barker GF, Thursz MR, Marchesi JR, McDonald JAK. Functional microbiomics: Evaluation of gut microbiota-bile acid metabolism interactions in health and disease. Methods. 2018;149:49-58. doi: 10.1016/j.ymeth.2018.04.028

 

  1. Wahlström A, Aydin Ö, Olsson LM, et al. Alterations in bile acid kinetics after bariatric surgery in patients with obesity with or without type 2 diabetes. EBioMedicine. 2024;106:105265. doi: 10.1016/j.ebiom.2024.105265

 

  1. Zhen J, Zhou Z, He M, et al. The gut microbial metabolite trimethylamine N-oxide and cardiovascular diseases. Front Endocrinol. 2023;14:1085041. doi: 10.3389/fendo.2023.1085041

 

  1. Papandreou C, Moré M, Bellamine A. Trimethylamine N-oxide in relation to cardiometabolic health-cause or effect? Nutrients. 2020;12(5):1330. doi: 10.3390/nu12051330

 

  1. Gessner A, di Giuseppe R, Koch M, Fromm MF, Lieb W, Maas R. Trimethylamine-N-oxide (TMAO) determined by LC-MS/MS: distribution and correlates in the population-based PopGen cohort. Clin Chem Lab Med. 2020;58(5):733-740. doi: 10.1515/cclm-2019-1146

 

  1. Subramaniam S, Fletcher C. Trimethylamine N‐oxide: Breathe new life. Br J Pharmacol. 2018;175(8):1344-1353. doi: 10.1111/bph.13959

 

  1. Ufnal M, Zadlo A, Ostaszewski R. TMAO: A small molecule of great expectations. Nutr Burbank Los Angel Cty Calif. 2015;31(11-12):1317-1323. doi: 10.1016/j.nut.2015.05.006

 

  1. Li J, Chen Z, Wang Q, et al. Microbial and metabolic profiles unveil mutualistic microbe-microbe interaction in obesity-related colorectal cancer. Cell Rep Med. 2024;5(3):101429. doi: 10.1016/j.xcrm.2024.101429

 

  1. Barrea L, Annunziata G, Muscogiuri G, et al. Trimethylamine-N-oxide (TMAO) as novel potential biomarker of early predictors of metabolic syndrome. Nutrients. 2018;10(12):1971. doi: 10.3390/nu10121971

 

  1. Dehghan P, Farhangi MA, Nikniaz L, Nikniaz Z, Asghari- Jafarabadi M. Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) potentially increases the risk of obesity in adults: An exploratory systematic review and dose-response meta- analysis. Obes Rev. 2020;21(5):e12993. doi: 10.1111/obr.12993

 

  1. Sánchez-Alcoholado L, Ordóñez R, Otero A, et al. Gut microbiota-mediated inflammation and gut permeability in patients with obesity and colorectal cancer. Int J Mol Sci. 2020;21(18):6782. doi: 10.3390/ijms21186782

 

  1. Cheng WL, Li SJ, Lee TI, et al. Sugar fructose triggers gut dysbiosis and metabolic inflammation with cardiac arrhythmogenesis. Biomedicines. 2021;9(7):728. doi: 10.3390/biomedicines9070728

 

  1. Tavella T, Rampelli S, Guidarelli G, et al. Elevated gut microbiome abundance of Christensenellaceae, Porphyromonadaceae and Rikenellaceae is associated with reduced visceral adipose tissue and healthier metabolic profile in Italian elderly. Gut Microbes. 2021;13(1):1-19. doi: 10.1080/19490976.2021.1880221

 

  1. Alemán JO, Bokulich NA, Swann JR, et al. Fecal microbiota and bile acid interactions with systemic and adipose tissue metabolism in diet-induced weight loss of obese postmenopausal women. J Transl Med. 2018;16:244. doi: 10.1186/s12967-018-1619-z

 

  1. Deng L, Ou Z, Huang D, et al. Diverse effects of different Akkermansia muciniphila genotypes on Brown adipose tissue inflammation and whitening in a high-fat-diet murine model. Microb Pathog. 2020;147:104353. doi: 10.1016/j.micpath.2020.104353

 

  1. Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110(22):9066-9071. doi: 10.1073/pnas.1219451110

 

  1. Park S, Ji Y, Jung HY, et al. Lactobacillus plantarum HAC01 regulates gut microbiota and adipose tissue accumulation in a diet-induced obesity murine model. Appl Microbiol Biotechnol. 2017;101(4):1605-1614. doi: 10.1007/s00253-016-7953-2

 

  1. Mohd Hasali NH, Zamri AI, Lani MN, Matthews V, Mubarak A. Cheese containing probiotic Lactobacillus brevis NJ42 isolated from stingless bee honey reduces weight gain, fat accumulation, and glucose intolerance in mice. Heliyon. 2024;10(4):e25981. doi: 10.1016/j.heliyon.2024.e25981

 

  1. Yang F, Zhu WJ, Edirisuriya P, et al. Beneficial effects of a combination of Clostridium cochlearium and Lactobacillus acidophilus on body weight gain, insulin sensitivity, and gut microbiota in high-fat diet–induced obese mice. Nutrition. 2022;93:111439. doi: 10.1016/j.nut.2021.111439

 

  1. Mu J, Zhang J, Zhou X, et al. Effect of Lactobacillus plantarum KFY02 isolated from naturally fermented yogurt on the weight loss in mice with high-fat diet-induced obesity via PPAR-α/γ signaling pathway. J Funct Foods. 2020;75:104264. doi: 10.1016/j.jff.2020.104264

 

  1. Shirouchi B, Nagao K, Umegatani M, et al. Probiotic Lactobacillus gasseri SBT2055 improves glucose tolerance and reduces body weight gain in rats by stimulating energy expenditure. Br J Nutr. 2016;116(3):451-458. doi: 10.1017/S0007114516002245

 

  1. Schellekens H, Torres-Fuentes C, van de Wouw M, et al. Bifidobacterium longum counters the effects of obesity: Partial successful translation from rodent to human. EBioMedicine. 2021;63:103176. doi: 10.1016/j.ebiom.2020.103176

 

  1. Solito A, Bozzi Cionci N, Calgaro M, et al. Supplementation with Bifidobacterium breve BR03 and B632 strains improved insulin sensitivity in children and adolescents with obesity in a cross-over, randomized double-blind placebo-controlled trial. Clin Nutr Edinb Scotl. 2021;40(7):4585-4594. doi: 10.1016/j.clnu.2021.06.002

 

  1. Zhang B, Wang L, Tian P, et al. Bifidobacterium adolescentis CCFM8630 exerts anti-obesity effects by modulating gut microbiota-related tryptophan metabolism. Food Sci Hum Wellness. 2024. doi: 10.26599/FSHW.2024.9250191

 

  1. Yang M, Wang JH, Shin JH, et al. Pharmaceutical efficacy of novel human-origin Faecalibacterium prausnitzii strains on high-fat-diet-induced obesity and associated metabolic disorders in mice. Front Endocrinol. 2023;14:1220044. doi: 10.3389/fendo.2023.1220044

 

  1. Navab-Moghadam F, Sedighi M, Khamseh ME, et al. The association of type II diabetes with gut microbiota composition. Microb Pathog. 2017;110:630-636. doi: 10.1016/j.micpath.2017.07.034

 

  1. Yoshida N, Yamashita T, Osone T, et al. Bacteroides spp. promotes branched-chain amino acid catabolism in brown fat and inhibits obesity. iScience. 2021;24(11):103342. doi: 10.1016/j.isci.2021.103342

 

  1. Seong E, Bose S, Han SY, et al. Positive influence of gut microbiota on the effects of Korean red ginseng in metabolic syndrome: A randomized, double-blind, placebo-controlled clinical trial. EPMA J. 2021;12(2):177-197. doi: 10.1007/s13167-021-00243-4

 

  1. Luo W, Zhou J, Yang X, et al. A Chinese medical nutrition therapy diet accompanied by intermittent energy restriction alleviates type 2 diabetes by enhancing pancreatic islet function and regulating gut microbiota composition. Food Res Int Ott Ont. 2022;161:111744. doi: 10.1016/j.foodres.2022.111744

 

  1. Yang JY, Lee YS, Kim Y, et al. Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Mucosal Immunol. 2017;10(1):104-116. doi: 10.1038/mi.2016.42

 

  1. Cano PG, Santacruz A, Moya Á, Sanz Y. Bacteroides uniformis CECT 7771 ameliorates metabolic and immunological dysfunction in mice with high-fat-diet induced obesity. PLoS One. 2012;7(7):e41079. doi: 10.1371/journal.pone.0041079

 

  1. You HJ, Si J, Kim J, et al. Bacteroides vulgatus SNUG 40005 restores akkermansia depletion by metabolite modulation. Gastroenterology. 2023;164(1):103-116. doi: 10.1053/j.gastro.2022.09.040

 

  1. Dong TS, Guan M, Mayer EA, et al. Obesity is associated with a distinct brain-gut microbiome signature that connects Prevotella and Bacteroides to the brain’s reward center. Gut Microbes. 2022;14(1):2051999. doi: 10.1080/19490976.2022.2051999

 

  1. Hjorth MF, Blædel T, Bendtsen LQ, et al. Prevotella-to- Bacteroides ratio predicts body weight and fat loss success on 24-week diets varying in macronutrient composition and dietary fiber: Results from a post-hoc analysis. Int J Obes. 2019;43(1):149-157. doi: 10.1038/s41366-018-0093-2

 

  1. Hjorth MF, Christensen L, Larsen TM, et al. Pretreatment Prevotella-to-Bacteroides ratio and salivary amylase gene copy number as prognostic markers for dietary weight loss. Am J Clin Nutr. 2020;111(5):1079-1086. doi: 10.1093/ajcn/nqaa007

 

  1. Hjorth MF, Roager HM, Larsen TM, et al. Pre-treatment microbial Prevotella-to-Bacteroides ratio, determines body fat loss success during a 6-month randomized controlled diet intervention. Int J Obes. 2018;42(3):580-583. doi: 10.1038/ijo.2017.220

 

  1. Aguirre M, Collins MD. Lactic acid bacteria and human clinical infection. J Appl Bacteriol. 1993;75(2):95-107. doi: 10.1111/j.1365-2672.1993.tb02753.x

 

  1. Archer AC, Muthukumar SP, Halami PM. Lactobacillus fermentum MCC2759 and MCC2760 alleviate inflammation and intestinal function in high-fat diet-fed and streptozotocin-induced diabetic rats. Probiotics Antimicrob Proteins. 2021;13(4):1068-1080. doi: 10.1007/s12602-021-09744-0

 

  1. Crovesy L, Ostrowski M, Ferreira DMTP, Rosado EL, Soares- Mota M. Effect of Lactobacillus on body weight and body fat in overweight subjects: A systematic review of randomized controlled clinical trials. Int J Obes 2005. 2017;41(11):1607-1614. doi: 10.1038/ijo.2017.161

 

  1. Xu Z, Jiang W, Huang W, Lin Y, Chan FKL, Ng SC. Gut microbiota in patients with obesity and metabolic disorders-a systematic review. Genes Nutr. 2022;17(1):2. doi: 10.1186/s12263-021-00703-6

 

  1. Valenlia KB, Morshedi M, Saghafi-Asl M, Shahabi P, Abbasi MM. Beneficial impacts of Lactobacillus plantarum and inulin on hypothalamic levels of insulin, leptin, and oxidative markers in diabetic rats. J Funct Foods. 2018;46:529-537. doi: 10.1016/j.jff.2018.04.069

 

  1. Wu CC, Weng WL, Lai WL, et al. Effect of Lactobacillus plantarum strain K21 on high-fat diet-fed obese mice. Evid Based Complement Altern Med. 2015;2015:391767. doi: 10.1155/2015/391767

 

  1. Hold GL, Schwiertz A, Aminov RI, Blaut M, Flint HJ. Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Appl Environ Microbiol. 2003;69(7):4320-4324. doi: 10.1128/AEM.69.7.4320-4324.2003

 

  1. Cao Y, Shen J, Ran ZH. Association between Faecalibacterium prausnitzii reduction and inflammatory bowel disease: A meta-analysis and systematic review of the literature. Gastroenterol Res Pract. 2014;2014:872725. doi: 10.1155/2014/872725

 

  1. Da Silva CC, Monteil MA, Davis EM. Overweight and obesity in children are associated with an abundance of Firmicutes and reduction of Bifidobacterium in their gastrointestinal microbiota. Child Obes. 2020;16(3):204-210. doi: 10.1089/chi.2019.0280

 

  1. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174-180. doi: 10.1038/nature09944

 

  1. Fernandes J, Su W, Rahat-Rozenbloom S, Wolever TMS, Comelli EM. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes. 2014;4(6):e121. doi: 10.1038/nutd.2014.23

 

  1. Ang Z, Ding JL. GPR41 and GPR43 in obesity and inflammation - protective or causative? Front Immunol. 2016;7:28. doi: 10.3389/fimmu.2016.00028

 

  1. Xu J, Liang R, Zhang W, et al. Faecalibacterium prausnitzii-derived microbial anti-inflammatory molecule regulates intestinal integrity in diabetes mellitus mice via modulating tight junction protein expression. J Diabetes. 2020;12(3):224-236. doi: 10.1111/1753-0407.12986

 

  1. Zhang X, Shen D, Fang Z, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One. 2013;8(8):e71108. doi: 10.1371/journal.pone.0071108

 

  1. Aguirre de Cárcer D, Cuív PO, Wang T, et al. Numerical ecology validates a biogeographical distribution and gender-based effect on mucosa-associated bacteria along the human colon. ISME J. 2011;5(5):801-809. doi: 10.1038/ismej.2010.177

 

  1. Balamurugan R, George G, Kabeerdoss J, Hepsiba J, Chandragunasekaran AMS, Ramakrishna BS. Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children. Br J Nutr. 2010;103(3):335-338. doi: 10.1017/S0007114509992182

 

  1. Hippe B, Remely M, Aumueller E, Pointner A, Magnet U, Haslberger AG. Faecalibacterium prausnitzii phylotypes in type two diabetic, obese, and lean control subjects. Benef Microbes. 2016;7(4):511-517. doi: 10.3920/BM2015.0075

 

  1. Munukka E, Rintala A, Toivonen R, et al. Faecalibacterium prausnitzii treatment improves hepatic health and reduces adipose tissue inflammation in high-fat fed mice. ISME J. 2017;11(7):1667-1679. doi: 10.1038/ismej.2017.24

 

  1. Shetty SA, Zuffa S, Bui TPN, Aalvink S, Smidt H, De Vos WM. Reclassification of Eubacterium hallii as Anaerobutyricum hallii gen. nov., comb. nov., and description of Anaerobutyricum soehngenii sp. nov., a butyrate and propionate-producing bacterium from infant faeces. Int J Syst Evol Microbiol. 2018;68(12):3741-3746. doi: 10.1099/ijsem.0.003041

 

  1. Cuffaro B, Assohoun ALW, Boutillier D, et al. Identification of new potential biotherapeutics from human gut microbiota-derived bacteria. Microorganisms. 2021;9(3):565. doi: 10.3390/microorganisms9030565

 

  1. Soret R. Impact Du Butyrate Sur La Plasticité Du Système Nerveux Entérique et Les Répercussions Fonctionnelles. These de doctorat. Nantes; 2011. Available from: https://www. theses.fr/2011NANT31VS [Last accessed on 2023 Aug 04].

 

  1. Miquel S, Leclerc M, Martin R, et al. Identification of metabolic signatures linked to anti-inflammatory effects of Faecalibacterium prausnitzii. mBio. 2015;6(2):e00300-15. doi: 10.1128/mBio.00300-15

 

  1. Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009;294(1):1-8. doi: 10.1111/j.1574-6968.2009.01514.x

 

  1. Macfarlane GT, Macfarlane S. Fermentation in the human large intestine: Its physiologic consequences and the potential contribution of prebiotics. J Clin Gastroenterol. 2011;45 Suppl: S120-127. doi: 10.1097/MCG.0b013e31822fecfe

 

  1. Ghotaslou R, Yeganeh-Sefidan F, Salahi-Eshlaqi B, Ebrahimzadeh-Leylabadlo H. Etiology of acute bacterial meningitis in Iran: A systematic review. Acta Med Iran. 2015;53:454-461.

 

  1. Ganesan K, Chung SK, Vanamala J, Xu B. Causal relationship between diet-induced gut microbiota changes and diabetes: A novel strategy to transplant Faecalibacterium prausnitzii in preventing diabetes. Int J Mol Sci. 2018;19(12):3720. doi: 10.3390/ijms19123720

 

  1. Verhoog S, Taneri PE, Roa Díaz ZM, et al. Dietary factors and modulation of bacteria strains of Akkermansia muciniphila and Faecalibacterium prausnitzii: A systematic review. Nutrients. 2019;11(7):1565. doi: 10.3390/nu11071565

 

  1. Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and butyrate-producing colon bacteria: Importance and strategies for their stimulation in the human gut. Front Microbiol. 2016;7:979. doi: 10.3389/fmicb.2016.00979

 

  1. Zhou L, Zhang M, Wang Y, et al. Faecalibacterium prausnitzii produces butyrate to maintain Th17/Treg balance and to ameliorate colorectal colitis by inhibiting histone deacetylase 1. Inflamm Bowel Dis. 2018;24(9):1926-1940. doi: 10.1093/ibd/izy182

 

  1. Rodrigues VF, Elias-Oliveira J, Pereira ÍS, et al. Akkermansia muciniphila and gut immune system: A good friendship that attenuates inflammatory bowel disease, obesity, and diabetes. Front Immunol. 2022;13:934695. doi: 10.3389/fimmu.2022.934695

 

  1. Karlsson CLJ, Önnerfält J, Xu J, Molin G, Ahrné S, Thorngren-Jerneck K. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity. 2012;20(11):2257-2261. doi: 10.1038/oby.2012.110

 

  1. Rausch P, Rehman A, Künzel S, et al. Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype. Proc Natl Acad Sci U S A. 2011;108(47):19030-19035. doi: 10.1073/pnas.1106408108

 

  1. Montesino CA. Akkermansia muciniphila, a bacteria against obesity and its relationship with diet. Systematic review. MLS Health Nutr Res. 2024;3(1):73-88. doi: 10.60134/mlshn.v3n1.2741

 

  1. Mujico JR, Baccan GC, Gheorghe A, Díaz LE, Marcos A. Changes in gut microbiota due to supplemented fatty acids in diet-induced obese mice. Br J Nutr. 2013;110(4):711-720. doi: 10.1017/S0007114512005612

 

  1. O’Callaghan A, van Sinderen D. Bifidobacteria and their role as members of the human gut microbiota. Front Microbiol. 2016;7:925. doi: 10.3389/fmicb.2016.00925

 

  1. Turroni F, Peano C, Pass DA, et al. Diversity of Bifidobacteria within the infant gut microbiota. PLoS One. 2012;7(5):e36957. doi: 10.1371/journal.pone.0036957

 

  1. Yin YN, Yu QF, Fu N, Liu XW, Lu FG. Effects of four Bifidobacteria on obesity in high-fat diet induced rats. World J Gastroenterol. 2010;16(27):3394-3401. doi: 10.3748/wjg.v16.i27.3394

 

  1. Reichold A, Brenner SA, Spruss A, Förster-Fromme K, Bergheim I, Bischoff SC. Bifidobacterium adolescentis protects from the development of nonalcoholic steatohepatitis in a mouse model. J Nutr Biochem. 2014;25(2):118-125. doi: 10.1016/j.jnutbio.2013.09.011

 

  1. Chen J, Wang R, Li XF, Wang RL. Bifidobacterium adolescentis supplementation ameliorates visceral fat accumulation and insulin sensitivity in an experimental model of the metabolic syndrome. Br J Nutr. 2012;107(10):1429-1434. doi: 10.1017/S0007114511004491

 

  1. Kikuchi K, Ben Othman M, Sakamoto K. Sterilized bifidobacteria suppressed fat accumulation and blood glucose level. Biochem Biophys Res Commun. 2018;501(4):1041-1047. doi: 10.1016/j.bbrc.2018.05.105

 

  1. Bennett JE, Dolin R, Blaser MJ. Preface to the Eighth Edition. In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. 8th ed. United States: W.B. Saunders; 2015. p. xxvii. doi: 10.1016/B978-1-4557-4801-3.00329-5

 

  1. Tang YW. Preface. In: Tang YW, Sussman M, Liu D, Poxton I, Schwartzman J, editors. Molecular Medical Microbiology. 2nd ed. United States: Academic Press; 2015. p. xix. doi: 10.1016/B978-0-12-397169-2.00130-X

 

  1. Flint HJ, Stewart CS. Bacteroides and Prevotella. In: Robinson RK, editor. Encyclopedia of Food Microbiology. Netherlands: Elsevier; 1999. p. 198-203. doi: 10.1006/rwfm.1999.0160

 

  1. Encyclopedia of Food Microbiology. ScienceDirect. Available from: https://www.sciencedirect.com:5070/ referencework/9780123847331/encyclopedia-of-food-microbiology [Last accessed on 2023 Sep 23.

 

  1. Hjorth MF, Christensen L, Kjølbæk L, et al. Pretreatment Prevotella-to-Bacteroides ratio and markers of glucose metabolism as prognostic markers for dietary weight loss maintenance. Eur J Clin Nutr. 2020;74(2):338-347. doi: 10.1038/s41430-019-0466-1

 

  1. Chen T, Long W, Zhang C, Liu S, Zhao L, Hamaker BR. Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Sci Rep. 2017;7(1):2594. doi: 10.1038/s41598-017-02995-4

 

  1. Schroeder BO, Bäckhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med. 2016;22(10):1079-1089. doi: 10.1038/nm.4185

 

  1. Deehan EC, Walter J. The fiber gap and the disappearing gut microbiome: Implications for human nutrition. Trends Endocrinol Metab. 2016;27(5):239-242. doi: 10.1016/j.tem.2016.03.001

 

  1. Kootte RS, Levin E, Salojärvi J, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 2017;26(4):611-619.e6. doi: 10.1016/j.cmet.2017.09.008

 

  1. Stanislawski MA, Dabelea D, Lange LA, Wagner BD, Lozupone CA. Gut microbiota phenotypes of obesity. NPJ Biofilms Microbiomes. 2019;5:18. doi: 10.1038/s41522-019-0091-8

 

  1. Faust K, Sathirapongsasuti JF, Izard J, et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol. 2012;8(7):e1002606. doi: 10.1371/journal.pcbi.1002606

 

Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing