AccScience Publishing / EJMO / Online First / DOI: 10.36922/ejmo.8208
ORIGINAL RESEARCH ARTICLE

Mapping breast cancer protein interaction networks as metric spaces: Insights into central zones and drug discovery targets

Emad Fadhal1,2*
Show Less
1 Department of Mathematics and Statistics, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
2 Department of Mathematics and Applied Mathematics, University of the Western Cape, Bellville, South Africa
Submitted: 25 December 2024 | Accepted: 6 March 2025 | Published: 20 March 2025
© 2025 by the Author(s).. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Graph theory was employed in recent advances of cancer research for gain deeper insights into the complex structure and function of protein-protein interaction (PPI) networks. By representing proteins as nodes and their interactions as edges, graph theory offers a comprehensive framework for analyzing the topological properties of these networks and identifying key nodes that regulate critical biological processes. This approach has been widely applied to study various cancers, including breast cancer. To investigate the molecular organization and critical pathways in breast cancer, we constructed a breast cancer protein-protein interaction network (BCPIN) and analyzed its hierarchical structure. The network was modeled as a metric space to delineate its central zones, facilitating the identification of essential hubs enriched with signaling pathways critical for cancer progression. Our study demonstrates the potential of hierarchical modeling of the BCPIN in unraveling its molecular organization and identifying therapeutic opportunities. By analyzing PPI network as a metric space, we highlight central zones 1 – 3 as critical hubs enriched with key signaling pathways, such as DNA repair, Notch signaling, and p53 signaling, which are essential to cancer progression. The identification of MAPK14 as a central node emphasizes its significant role in cancer biology and its value as a therapeutic target. The predominance of signaling proteins within these zones underscores their functional relevance, offering a strong rationale for prioritizing them in drug development. By modeling the PPI network as a metric space, we uncovered important insights into its architecture and the central zone’s critical role in facilitating key cellular processes. Our results indicate that zones 1 – 3, particularly the central zone, may serve as promising targets for drug discovery in cancer biology.

Keywords
Protein interaction networks
Metric spaces
Signaling pathways
Breast cancer
Central zones
Drug discovery
Funding
None
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17-48.
  2. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011;144(5):646-674. doi: 10.1016/j.cell.2011.02.013
  3. Barabási AL, Oltvai ZN. Network biology: Understanding the cell’s functional organization. Nat Rev Genet. 2004;5(2): 101-113. doi: 10.1038/nrg1272
  4. Pavlopoulos GA, Secrier M, Moschopoulos CN, et al. Using graph theory to analyze biological networks. BioData Min. 2011;4:10. doi: 10.1186/1756-0381-4-10
  5. Zhang Y, Xiang J, Tang L, et al. Identifying breast cancer-related genes based on a novel computational framework involving KEGG pathways and PPI network modularity. Front Genet. 2021;12:596794. doi: 10.3389/fgene.2021.596794
  6. Shi K, Li Y, Yang M, Li W. Identification of key genes and pathways in female lung cancer patients who never smoked by a bioinformatics analysis. J Cancer. 2019;10(1):51-59. doi: 10.7150/jca.26908
  7. Liu QQ, Ren K, Liu SH, Li WM, Huang CJ, Yang XH. MicroRNA-140-5p aggravates hypertension and oxidative stress of atherosclerosis via targeting Nrf2 and Sirt2. Int J Mol Med. 2019;43(2):839-849. doi: 10.3892/ijmm.2018.3996.
  8. Wang E, Zaman N, Mcgee S, Milanese JS, Masoudi-Nejad A, O’Connor-McCourt M. Predictive genomics: A cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data. Semin Cancer Biol. 2015;30:4-12. doi: 10.1016/j.semcancer.2014.04.002
  9. Chen J, Riazifar H, Guan MX, Huang T. Modeling autosomal dominant optic atrophy using induced pluripotent stem cells and identifying potential therapeutic targets. Stem Cell Res Ther. 2016;7:2. doi: 10.1186/s13287-015-0264-1
  10. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL. The human disease network. Proc Natl Acad Sci U S A. 2007;104(21):8685-8690. doi: 10.1073/pnas.0701361104
  11. Ideker T, Sharan R. Protein networks in disease. Genome Res. 2008;18(4):644-652. doi: 10.1101/gr.071852.107
  12. Cowen L, Ideker T, Raphael BJ, Sharan R. Network propagation: A universal amplifier of genetic associations. Nat Rev Genet. 2017;18(9):551-562. doi: 10.1038/nrg.2017.38
  13. Csermely P, Korcsmáros T, Kiss HJ, London G, Nussinov R. Structure and dynamics of molecular networks: A novel paradigm of drug discovery: A comprehensive review. Pharmacol Ther. 2013;138(3):333-408. doi: 10.1016/j.pharmthera.2013.01.016
  14. Menche J, Sharma A, Kitsak M, et al. Uncovering disease-disease relationships through the incomplete interactome. Science. 2015;347(6224):1257601. doi: 10.1126/science.1257601
  15. Borgatti SP, Everett MG. A graph-theoretic perspective on centrality. Soc Netw. 2006;28(4):466-484.
  16. Jeong H, Mason SP, Barabási AL, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001;411(6833):41-42. doi: 10.1038/35075138
  17. Network YI. High-quality binary protein interaction map of the. Science. 2008;1158684(104):322. doi: 10.1126/science.1158684
  18. Batada NN, Hurst LD, Tyers M. Evolutionary and physiological importance of hub proteins. PLoS Comput Biol. 2006;2(7):e88. doi: 10.1371/journal.pcbi.0020088
  19. Fadhal E, Gamieldien J, Mwambene EC. Protein interaction networks as metric spaces: A novel perspective on distribution of hubs. BMC Syst Biol. 2014;8:6. doi: 10.1186/1752-0509-8-6
  20. Fadhal E. Exploring lung cancer protein network: Understanding structure and function through metric space modeling. Eur J Pure Appl Math. 2024;17(2):905-921.
  21. Wu G, Feng X, Stein L. A human functional protein interaction network and its application to cancer data analysis. Genome Biol. 2010;11(5):R53. doi: 10.1186/gb-2010-11-5-r53
  22. Fadhal E, Mwambene EC, Gamieldien J. Modelling human protein interaction networks as metric spaces has potential in disease research and drug target discovery. BMC Syst Biol. 2014;8:68. doi: 10.1186/1752-0509-8-68
  23. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr., Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546-1558.doi: 10.1126/science.1235122
  24. Madkour MM, Anbar HS, El-Gamal MI. Current status and future prospects of p38α/MAPK14 kinase and its inhibitors. Eur J Med Chem. 2021;213:113216. doi: 10.1016/j.ejmech.2021.113216
  25. Liu Y, Du Y, Hu X, Zhao L, Xia W. Up-regulation of ceRNA TINCR by SP1 contributes to tumorigenesis in breast cancer. BMC Cancer. 2018;18:367. doi: 10.1186/s12885-018-4255-3
  26. Mesquita FP, Moreira-Nunes CA, da Silva EL, et al. MAPK14 (p38α) inhibition effects against metastatic gastric cancer cells: A potential biomarker and pharmacological target. Toxicol In Vitro. 2020;66:104839. doi: 10.1016/j.tiv.2020.104839
  27. Blake JA, Bult CJ, Eppig JT, Kadin JA, Richardson JE, Mouse Genome Database Group. The mouse genome database genotypes: Phenotypes. Nucleic Acids Res. 2009;37(Suppl 1):D712-D719. doi: 10.1093/nar/gkn886
  28. Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. 2001;411(6835):355-365. doi: 10.1038/35077225
  29. Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer. 2004;4(12):937-947. doi: 10.1038/nrc1503
  30. Foulstone E, Prince S, Zaccheo O, et al. Insulin‐like growth factor ligands, receptors, and binding proteins in cancer. J Pathol. 2005;205(2):145-153. doi: 10.1002/path.1712
  31. Lapenna S, Giordano A. Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov. 2009;8(7):547-566. doi: 10.1038/nrd2907
  32. Min J, Zaslavsky A, Fedele G, et al. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-κB. Nat Med. 2010;16(3):286-294. doi: 10.1038/nm.2100
  33. Münger K. Disruption of oncogene/tumor suppressor networks during human carcinogenesis. Cancer Investig. 2002;20(1):71-81. doi: 10.1081/cnv-120000369
  34. Lee EY, Muller WJ. Oncogenes and tumor suppressor genes. Cold Spring Harb Perspect Biol. 2010;2(10):a003236. doi: 10.1101/cshperspect.a003236
  35. Chen WH, Lu G, Chen X, Zhao XM, Bork P. OGEE v2: An update of the online gene essentiality database with special focus on differentially essential genes in human cancer cell lines. Nucleic Acids Res. 2016;44(D1):D1057-D1063. doi: 10.1093/nar/gkw1013
  36. Chen WH, Trachana K, Lercher MJ, Bork P. Younger genes are less likely to be essential than older genes, and duplicates are less likely to be essential than singletons of the same age. Mol Biol Evol. 2012;29(7):1703-1706. doi: 10.1093/molbev/mss014
  37. Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2007;36(suppl 1):D480-D484.
  38. Petrucelli N, Daly MB, Pal T. BRCA1-and BRCA2-Associated Hereditary Breast and Ovarian Cancer. Seattle, WA: University of Washington; 2022.
  39. Peto J, Collins N, Barfoot R, et al. Prevalence of BRCA1 and BRCA2 gene mutations in patients with early-onset breast cancer. J Natl Cancer Inst. 1999;91(11):943-949. doi: 10.1093/jnci/91.11.943
  40. Couch FJ, Shimelis H, Hu C, et al. Associations between cancer predisposition testing panel genes and breast cancer. JAMA Oncol. 2017;3(9):1190-1196. doi: 10.1001/jamaoncol.2017.0424
  41. Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/ MAPK signalling pathway and tumorigenesis. Exp Ther Med. 2020;19(3):1997-2007. doi: 10.3892/etm.2020.8454
  42. Lee S, Rauch J, Kolch W. Targeting MAPK signaling in cancer: Mechanisms of drug resistance and sensitivity. Int J Mol Sci. 2020;21(3):1102. doi: 10.3390/ijms21031102
  43. Mukherjee CS, Zhang J. A multi-core periphery perspective: Ranking via relative centrality. arXiv preprint. 2024; arXiv:2406.04487.
  44. Zhao L, Yang Y, Bai X, et al. Structure, robustness and supply risk in the global wind turbine trade network. Renew Sustain Energy Rev. 2023;177:113214.
  45. Brown RE, Short SP, Williams CS. Colorectal cancer and metabolism. Curr Colorectal Cancer Rep. 2018;14:226-241. doi: 10.1007/s11888-018-0420-y
  46. Blevins AS, Kim JZ, Bassett DS. Variability in higher order structure of noise added to weighted networks. Commun Phys. 2021;4(1):233.
  47. Ramos RH, Ferreira COL, Simao A. Human protein-protein interaction networks: A topological comparison review. Heliyon. 2024;10(5):e27278.
  48. Fadhal E, Gamieldien J, Mwambene EC. Self-similarity of human protein interaction networks: A novel strategy of distinguishing proteins. Sci Rep. 2015;5(1):7628. doi: 10.1038/srep07628
  49. Snider J, Kotlyar M, Saraon P, Yao Z, Jurisica I, Stagljar I. Fundamentals of protein interaction network mapping. Mol Syst Biol. 2015;11(12):848. doi: 10.15252/msb.20156351
  50. Wang Y, Zhang S, Li F, et al. Therapeutic target database 2020: Enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res. 2020;48:D1031-D1041. doi: 10.1093/nar/gkz981
  51. Yi Y, Fang Y, Wu K, Liu Y, Zhang W. Comprehensive gene and pathway analysis of cervical cancer progression. Oncol Lett. 2020;19(4):3316-3332. doi: 10.3892/ol.2020.11439
  52. Liu Z, Huang H, Yu Y, et al. Exploring the potential mechanism of action of ursolic acid against gastric cancer and COVID-19 using network pharmacology and bioinformatics analysis. Curr Pharm Des. 2023;29(16): 1274-1292. doi: 10.2174/1381612829666230510124716

 

 

 

 

Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing