AccScience Publishing / EJMO / Online First / DOI: 10.36922/ejmo.8125
REVIEW ARTICLE

Liver fibrosis: Clinical assessment, pathogenesis, and anti-fibrotic therapy

Xin Liu1 Chongmiao Yang1 Yanyan Liu1 Xiaowen Lin1 Wei Su2 Jian Sun2* Xiaoguang Zhao1*
Show Less
1 Zhuhai People’s Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, Guangdong, China
2 Translational Medicine Research Center, Medical Pathology Center, Chongqing University Three Gorges Hospital, School of Medicine Chongqing University, Chongqing University, Chongqing, China
Submitted: 22 December 2024 | Revised: 25 February 2025 | Accepted: 6 March 2025 | Published: 26 March 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Liver fibrosis represents a prevalent pathological change that occurs during the progression of chronic liver disease, which is characterized by excessive reparative responses following hepatic tissue injury. Advances in diagnostic and imaging technologies have facilitated a deeper understanding of liver function and metabolic changes, which are crucial for early and accurate diagnosis of liver fibrosis. Furthermore, elucidating the signaling pathways involved in liver fibrogenesis provides valuable insights into its pathogenesis and progression, guiding clinical management and treatment strategies for patients with liver fibrosis. This review critically evaluates various clinical and experimental therapies aimed at mitigating or reversing liver fibrosis. Specific targeted nanocarrier drug delivery systems and traditional herbal medicines hold promise in enhancing anti-fibrotic efficacy and inhibiting disease progression.

Keywords
Liver fibrosis
Hepatic stellate cells
Non-invasive assessment
Anti-fibrotic therapy
Traditional Chinese medicine
Funding
This study is supported by the National Natural Science Foundation of China (32200936, 82200070, 82304589), the Guangdong Basic and Applied Basic Research Foundation (2021A1515110561, 2021A1515111049), the Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment (2021B1212040004), and the Xiangshan Talent Scientific Research Start-up Fund of Zhuhai People’s Hospital (2021XSYC-07).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Yang LX, Qi C, Lu S, et al. Alleviation of liver fibrosis by inhibiting a non-canonical ATF4-regulated enhancer program in hepatic stellate cells. Nat Commun. 2025;16(1):524. doi: 10.1038/s41467-024-55738-1

 

  1. Tao J, Wu Z, Liang Y, et al. Lhx2 specifically expressed in HSCs promotes liver regeneration and inhibits liver fibrosis. Hepatology. 2024. doi: 10.1097/HEP.0000000000001201

 

  1. Kim HY, Rosenthal SB, Liu X, et al. Multi-modal analysis of human hepatic stellate cells identifies novel therapeutic targets for metabolic dysfunction-associated steatotic liver disease. J Hepatol. 2024. doi: 10.1016/j.jhep.2024.10.044

 

  1. Tung HC, Kim JW, Zhu J, et al. Inhibition of heme-thiolate monooxygenase CYP1B1 prevents hepatic stellate cell activation and liver fibrosis by accumulating trehalose. Sci Transl Med. 2024;16(766):eadk8446. doi: 10.1126/scitranslmed.adk8446

 

  1. Deng Y, Lu L, Zhu D, et al. MafG/MYH9-LCN2 axis promotes liver fibrosis through inhibiting ferroptosis of hepatic stellate cells. Cell Death Differ. 2024;31(9):1127-1139. doi: 10.1038/s41418-024-01322-5

 

  1. Babuta M, Morel C, de Carvalho Ribeiro M, et al. Neutrophil extracellular traps activate hepatic stellate cells and monocytes via NLRP3 sensing in alcohol-induced acceleration of MASH fibrosis. Gut. 2024;73(11):1854-1869. doi: 10.1136/gutjnl-2023-331447

 

  1. Tian Y, Ni Y, Zhang T, Cao Y, Zhou M, Zhao C. Targeting hepatic macrophages for non-alcoholic fatty liver disease therapy. Front Cell Dev Biol. 2024;12:1444198. doi: 10.3389/fcell.2024.1444198

 

  1. Bradic I, Kuentzel KB, Pirchheim A, et al. From LAL-D to MASLD: Insights into the role of LAL and Kupffer cells in liver inflammation and lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids. 2025;1870(1):159575. doi: 10.1016/j.bbalip.2024.159575

 

  1. Lee J, Woo H, Kang H, Park YK, Lee JY. Nicotinamide riboside targets mitochondrial unfolded protein response to reduce alcohol-induced damage in Kupffer cells. J Pathol. 2025;265(1):110-122. doi: 10.1002/path.6372

 

  1. Fima R, Dussaud S, Benbida C, et al. Loss of embryonically-derived Kupffer cells during hypercholesterolemia accelerates atherosclerosis development. Nat Commun. 2024;15(1):8341. doi: 10.1038/s41467-024-52735-2

 

  1. Li R, Wei R, Liu C, et al. Heme oxygenase 1-mediated ferroptosis in Kupffer cells initiates liver injury during heat stroke. Acta Pharm Sin B. 2024;14(9):3983-4000. doi: 10.1016/j.apsb.2024.05.007

 

  1. Li T, Song X, Chen J, et al. Kupffer Cell-derived IL6 Promotes hepatocellular carcinoma metastasis via the JAK1-ACAP4 pathway. Int J Biol Sci. 2025;21(1):285-305. doi: 10.7150/ijbs.97109

 

  1. Parola M, Pinzani M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med. 2019;65:37-55. doi: 10.1016/j.mam.2018.09.002

 

  1. Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 2017;14(7):397-411. doi: 10.1038/nrgastro.2017.38

 

  1. Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol. 2021;18(3):151-166. doi: 10.1038/s41575-020-00372-7

 

  1. Borkham-Kamphorst E, Weiskirchen R. The PDGF system and its antagonists in liver fibrosis. Cytokine Growth Factor Rev. 2016;28:53-61. doi: 10.1016/j.cytogfr.2015.10.002

 

  1. Hu HH, Cao G, Wu XQ, Vaziri ND, Zhao YY. Wnt signaling pathway in aging-related tissue fibrosis and therapies. Ageing Res Rev. 2020;60:101063. doi: 10.1016/j.arr.2020.101063

 

  1. Kim A, Wu X, Allende DS, Nagy LE. Gene deconvolution reveals aberrant liver regeneration and immune cell infiltration in alcohol-associated hepatitis. Hepatology. 2021;74(2):31759. doi: 10.1002/hep.31759

 

  1. Pivovarova-Ramich O, Loske J, Hornemann S, et al. Hepatic Wnt1 inducible signaling pathway protein 1 (WISP-1/ CCN4) associates with markers of liver fibrosis in severe obesity. Cells. 2021;10(5):1048. doi: 10.3390/cells10051048

 

  1. Yue Z, Jiang Z, Ruan B, et al. Disruption of myofibroblastic Notch signaling attenuates liver fibrosis by modulating fibrosis progression and regression. Int J Biol Sci. 2021;17(9):2135-2146. doi: 10.7150/ijbs.60056

 

  1. Perramón M, Carvajal S, Reichenbach V, et al. The pituitary tumour-transforming gene 1/delta-like homologue 1 pathway plays a key role in liver fibrogenesis. Liver Int. 2022;42(3):651-662. doi: 10.1111/liv.15165

 

  1. Lin X, Li J, Xing YQ. Geniposide, a sonic hedgehog signaling inhibitor, inhibits the activation of hepatic stellate cell. Int Immunopharmacol. 2019;72:330-338. doi: 10.1016/j.intimp.2019.04.016

 

  1. Yan J, Hu B, Shi W, et al. Gli2-regulated activation of hepatic stellate cells and liver fibrosis by TGF-β signaling. Am J Physiol Gastrointest Liver Physiol. 2021;320(5):G720-G728. doi: 10.1152/ajpgi.00310.2020

 

  1. Yang L, Wang Y, Mao H, et al. Sonic hedgehog is an autocrine viability factor for myofibroblastic hepatic stellate cells. J Hepatol. 2008;48(1):98-106. doi: 10.1016/j.jhep.2007.07.032

 

  1. Choi SS, Omenetti A, Witek RP, et al. Hedgehog pathway activation and epithelial-to-mesenchymal transitions during myofibroblastic transformation of rat hepatic cells in culture and cirrhosis. Am J Physiol Gastrointest Liver Physiol. 2009;297(6):G1093-G1106. doi: 10.1152/ajpgi.00292.2009

 

  1. Zhang F, Hao M, Jin H, et al. Canonical hedgehog signalling regulates hepatic stellate cell-mediated angiogenesis in liver fibrosis. Br J Pharmacol. 2017;174(5):409-423. doi: 10.1111/bph.13701

 

  1. Jung Y, Brown KD, Witek RP, et al. Accumulation of hedgehog-responsive progenitors parallels alcoholic liver disease severity in mice and humans. Gastroenterology. 2008;134(5):1532-1543. doi: 10.1053/j.gastro.2008.02.022

 

  1. Fleig SV, Choi SS, Yang L, et al. Hepatic accumulation of Hedgehog-reactive progenitors increases with severity of fatty liver damage in mice. Lab Invest. 2007;87(12):1227-1239. doi: 10.1038/labinvest.3700689

 

  1. Grzelak CA, Martelotto LG, Sigglekow ND, et al. The intrahepatic signalling niche of hedgehog is defined by primary cilia positive cells during chronic liver injury. J Hepatol. 2014;60(1):143-151. doi: 10.1016/j.jhep.2013.08.012

 

  1. Link F, Li Y, Zhao J, et al. ECM1 attenuates hepatic fibrosis by interfering with mediators of latent TGF-beta1 activation. Gut. Feb 6 2025;74(3):424-439. doi: 10.1136/gutjnl-2024-333213

 

  1. Crouchet E, Dachraoui M, Juhling F, et al. Targeting the liver clock improves fibrosis by restoring TGF-beta signaling. J Hepatol. 2025;82(1):120-133. doi: 10.1016/j.jhep.2024.07.034

 

  1. Ye Q, Liu Y, Zhang G, et al. Deficiency of gluconeogenic enzyme PCK1 promotes metabolic-associated fatty liver disease through PI3K/AKT/PDGF axis activation in male mice. Nat Commun. 2023;14(1):1402. doi: 10.1038/s41467-023-37142-3

 

  1. Kostallari E, Hirsova P, Prasnicka A, et al. Hepatic stellate cell-derived platelet-derived growth factor receptor-alpha-enriched extracellular vesicles promote liver fibrosis in mice through SHP2. Hepatology. 2018;68(1):333-348. doi: 10.1002/hep.29803

 

  1. Wang F, Chen L, Kong D, et al. Canonical Wnt signaling promotes HSC glycolysis and liver fibrosis through an LDH-A/HIF-1alpha transcriptional complex. Hepatology. 2024;79(3):606-623. doi: 10.1097/HEP.0000000000000569

 

  1. Hu Y, Peng L, Zhuo X, Yang C, Zhang Y. Hedgehog signaling pathway in fibrosis and targeted therapies. Biomolecules. 2024;14(12):1485. doi: 10.3390/biom14121485

 

  1. Lo RC, Kim H. Histopathological evaluation of liver fibrosis and cirrhosis regression. Clin Mol Hepatol. 2017;23(4):302-307. doi: 10.3350/cmh.2017.0078

 

  1. Colling R, Verrill C, Fryer E, et al. Bile duct basement membrane thickening in primary sclerosing cholangitis. Histopathology. 2016;68(6):819-824. doi: 10.1111/his.12857

 

  1. Bedossa P, Poynard T. An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology. 1996;24(2):289-293. doi: 10.1002/hep.510240201

 

  1. Ishak K, Baptista A, Bianchi L, et al. Histological grading and staging of chronic hepatitis. J Hepatol. 1995;22(6):696-699. doi: 10.1016/0168-8278(95)80226-6

 

  1. Chowdhury AB, Mehta KJ. Liver biopsy for assessment of chronic liver diseases: A synopsis. Clin Exp Med. 2023;23:273-285. doi: 10.1007/s10238-022-00799-z

 

  1. Chin JL, Pavlides M, Moolla A, Ryan JD. Non-invasive markers of liver fibrosis: Adjuncts or alternatives to liver biopsy? Front Pharmacol. 2016;7:159. doi: 10.3389/fphar.2016.00159

 

  1. Younossi ZM, Noureddin M, Bernstein D, et al. Role of noninvasive tests in clinical gastroenterology practices to identify patients with nonalcoholic steatohepatitis at high risk of adverse outcomes: Expert panel recommendations. Am J Gastroenterol. 2021;116(2):254-262. doi: 10.14309/ajg.0000000000001054

 

  1. Moreno C, Mueller S, Szabo G. Non-invasive diagnosis and biomarkers in alcohol-related liver disease. J Hepatol. 2019;70(2):273-283. doi: 10.1016/j.jhep.2018.11.025

 

  1. Hagström H, Talbäck M, Andreasson A, Walldius G, Hammar N. Repeated FIB-4 measurements can help identify individuals at risk of severe liver disease. J Hepatol. 2020;73(5):1023-1029. doi: 10.1016/j.jhep.2020.06.007

 

  1. Roccarina D, Iogna Prat L, Pallini G, et al. Comparison of point-shear wave elastography (ElastPQ) and transient elastography (FibroScan) for liver fibrosis staging in patients with non-alcoholic fatty liver disease. Liver Int. 2022;42(10):2195-2203. doi: 10.1111/liv.15297

 

  1. Serra-Burriel M, Graupera I, Torán P, et al. Transient elastography for screening of liver fibrosis: Cost-effectiveness analysis from six prospective cohorts in Europe and Asia. J Hepatol. 2019;71(6):1141-1151. doi: 10.1016/j.jhep.2019.08.019

 

  1. Hydes T, Brown E, Hamid A, Bateman AC, Cuthbertson DJ. Current and emerging biomarkers and imaging modalities for nonalcoholic fatty liver disease: Clinical and research applications. Clin Ther. 2021;43(9):1505-1522. doi: 10.1016/j.clinthera.2021.07.012

 

  1. Wu L, Huang X-Q, Li N, et al. A magnetic resonance imaging modality for non-invasively distinguishing progression of liver fibrosis by visualizing hepatic platelet-derived growth factor receptor-beta expression in mice. J Gastroenterol Hepatol. 2021;36(12):3448-3456. doi: 10.1111/jgh.15628

 

  1. Hsu C, Caussy C, Imajo K, et al. Magnetic Resonance vs Transient Elastography analysis of patients with nonalcoholic fatty liver disease: A systematic review and pooled analysis of individual participants. Clin Gastroenterol Hepatol. 2019;17(4):630-637.e8. doi: 10.1016/j.cgh.2018.05.059

 

  1. Coste P, Llop E, Perelló C, et al. Comparison of non-invasive fibrosis scores to predict increased liver stiffness in the general population with unknown liver disease: Searching for the primary physician’s best friend. Dig Liver Dis. 2022;54(9):1209-1214. doi: 10.1016/j.dld.2022.03.013

 

  1. Kim BK, Tamaki N, Imajo K, et al. Head-to-head comparison between MEFIB, MAST, and FAST for detecting stage 2 fibrosis or higher among patients with NAFLD. J Hepatol. 2022;77(6):1482-1490. doi: 10.1016/j.jhep.2022.07.020

 

  1. Long MT, Noureddin M, Lim JK. AGA clinical practice update: Diagnosis and management of nonalcoholic fatty liver disease in lean individuals: Expert review. Gastroenterology. 2022;163(3):764-774.e1. doi: 10.1053/j.gastro.2022.06.023

 

  1. Keegan A, Malamal G, Lee Y, et al. Multi-modal diagnostic imaging of metabolic dysfunction-associated steatotic liver disease: Non-invasive analyses by photoacoustic ultrasound and MRI. Am J Pathol. 2025. doi: 10.1016/j.ajpath.2025.01.012

 

  1. Gao J, Wang Y, Meng X, et al. A FAPalpha-activated MRI nanoprobe for precise grading diagnosis of clinical liver fibrosis. Nat Commun. 2024;15(1):8036. doi: 10.1038/s41467-024-52308-3

 

  1. Duarte-Rojo A, Taouli B, Leung DH, et al. Imaging-based noninvasive liver disease assessment for staging liver fibrosis in chronic liver disease: A systematic review supporting the AASLD Practice Guideline. Hepatology. 2025;81(2):725-748. doi: 10.1097/HEP.0000000000000852

 

  1. Liver EAftSot. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J Hepatol. 2017;67(2):370-398. doi: 10.1016/j.jhep.2017.03.021

 

  1. Yuen MF, Ahn SH, Chen DS, et al. Chronic Hepatitis B virus infection: Disease revisit and management recommendations. J Clin Gastroenterol. 2016;50(4):286-294. doi: 10.1097/MCG.0000000000000478

 

  1. Li Q, Sun B, Zhuo Y, et al. Interferon and interferon-stimulated genes in HBV treatment. Front Immunol. 2022;13:1034968. doi: 10.3389/fimmu.2022.1034968

 

  1. Maan R, van Tilborg M, Deterding K, et al. Safety and effectiveness of direct-acting antiviral agents for treatment of patients with chronic hepatitis C virus infection and cirrhosis. Clin Gastroenterol Hepatol. 2016;14(12):1821-1830.e6. doi: 10.1016/j.cgh.2016.07.001

 

  1. Verna EC, Morelli G, Terrault NA, et al. DAA therapy and long-term hepatic function in advanced/decompensated cirrhosis: Real-world experience from HCV-TARGET cohort. J Hepatol. 2020;73(3):540-548. doi: 10.1016/j.jhep.2020.03.031

 

  1. Oltmanns C, Liu Z, Mischke J, et al. Reverse inflammaging: Long-term effects of HCV cure on biological age. J Hepatol. 2023;78(1):90-98. doi: 10.1016/j.jhep.2022.08.042

 

  1. Liver EAftSot. EASL recommendations on treatment of hepatitis C: Final update of the series. J Hepatol. 2020;73(5):1170-1218. doi: 10.1016/j.jhep.2020.08.018

 

  1. Krassenburg LA, Maan R, Ramji A, et al. Clinical outcomes following DAA therapy in patients with HCV-related cirrhosis depend on disease severity. J Hepatol. 2021;74(5):1053-1063. doi: 10.1016/j.jhep.2020.11.021

 

  1. Koutoukidis DA, Astbury NM, Tudor KE, et al. Association of weight loss interventions with changes in biomarkers of nonalcoholic fatty liver disease: A systematic review and meta-analysis. JAMA Intern Med. 2019;179(9):1262-1271. doi: 10.1001/jamainternmed.2019.2248

 

  1. Huang DQ, El-Serag HB, Loomba R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2021;18(4):223-238. doi: 10.1038/s41575-020-00381-6

 

  1. Huang DQ, Mathurin P, Cortez-Pinto H, Loomba R. Global epidemiology of alcohol-associated cirrhosis and HCC: Trends, projections and risk factors. Nat Rev Gastroenterol Hepatol. 2023;20(1):37-49. doi: 10.1038/s41575-022-00688-6

 

  1. Blanc JF, Khemissa F, Bronowicki JP, et al. Phase 2 trial comparing sorafenib, pravastatin, their combination or supportive care in HCC with Child-Pugh B cirrhosis. Hepatol Int. 2021;15(1):93-104. doi: 10.1007/s12072-020-10120-3

 

  1. Hao H, Zhang D, Shi J, et al. Sorafenib induces autophagic cell death and apoptosis in hepatic stellate cell through the JNK and Akt signaling pathways. Anticancer Drugs. 2016;27(3):192-203. doi: 10.1097/CAD.0000000000000316

 

  1. Su TH, Shiau CW, Jao P, et al. Sorafenib and its derivative SC-1 exhibit antifibrotic effects through signal transducer and activator of transcription 3 inhibition. Proc Natl Acad Sci U S A. 2015;112(23):7243-7248. doi: 10.1073/pnas.1507499112

 

  1. Yuan S, Wei C, Liu G, et al. Sorafenib attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis via HIF-1α/ SLC7A11 pathway. Cell Prolif. 2022;55(1):e13158. doi: 10.1111/cpr.13158

 

  1. Chen XF, Ji S. Sorafenib attenuates fibrotic hepatic injury through mediating lysine crotonylation. Drug Des Devel Ther. 2022;16:2133-2144. doi: 10.2147/DDDT.S368306

 

  1. Wang E, Liao Z, Wang L, et al. A combination of pirfenidone and TGF-β inhibition mitigates cystic echinococcosis-associated hepatic injury. Parasitology. 2021;148(7):767-778. doi: 10.1017/S0031182021000287

 

  1. Komiya C, Tanaka M, Tsuchiya K, et al. Antifibrotic effect of pirfenidone in a mouse model of human nonalcoholic steatohepatitis. Sci Rep. 2017;7:44754. doi: 10.1038/srep44754

 

  1. Tsukahara Y, Ferran B, Minetti ET, et al. Administration of glutaredoxin-1 attenuates liver fibrosis caused by aging and non-alcoholic steatohepatitis. Antioxidants (Basel). 2022;11(5):867. doi: 10.3390/antiox11050867

 

  1. Chen G, Ni Y, Nagata N, et al. Pirfenidone prevents and reverses hepatic insulin resistance and steatohepatitis by polarizing M2 macrophages. Lab Invest. 2019;99(9):1335-1348. doi: 10.1038/s41374-019-0255-4

 

  1. Xi Y, Li Y, Xu P, et al. The anti-fibrotic drug pirfenidone inhibits liver fibrosis by targeting the small oxidoreductase glutaredoxin-1. Sci Adv. 2021;7(36):eabg9241. doi: 10.1126/sciadv.abg9241

 

  1. Armendáriz-Borunda J, Islas-Carbajal MC, Meza-García E, et al. A pilot study in patients with established advanced liver fibrosis using pirfenidone. Gut. 2006;55(11):1663-1665. doi: 10.1136/gut.2006.107136

 

  1. Flores-Contreras L, Sandoval-Rodríguez AS, Mena- Enriquez MG, et al. Treatment with pirfenidone for two years decreases fibrosis, cytokine levels and enhances CB2 gene expression in patients with chronic hepatitis C. BMC Gastroenterol. 2014;14:131. doi: 10.1186/1471-230X-14-131

 

  1. Sandoval-Rodriguez A, Monroy-Ramirez HC, Meza- Rios A, et al. Pirfenidone is an agonistic ligand for PPARα and improves NASH by activation of SIRT1/LKB1/pAMPK. Hepatol Commun. 2020;4(3):434-449. doi: 10.1002/hep4.1474

 

  1. Poo JL, Torre A, Aguilar-Ramírez JR, et al. Benefits of prolonged-release pirfenidone plus standard of care treatment in patients with advanced liver fibrosis: PROMETEO study. Hepatol Int. 2020;14(5):817-827. doi: 10.1007/s12072-020-10069-3

 

  1. Nevens F, Andreone P, Mazzella G, et al. A Placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N Engl J Med. 2016;375(7):631-643. doi: 10.1056/NEJMoa1509840

 

  1. Kowdley KV, Luketic V, Chapman R, et al. A randomized trial of obeticholic acid monotherapy in patients with primary biliary cholangitis. Hepatology. 2018;67(5):1890-1902. doi: 10.1002/hep.29569

 

  1. Kowdley KV, Vuppalanchi R, Levy C, et al. A randomized, placebo-controlled, phase II study of obeticholic acid for primary sclerosing cholangitis. J Hepatol. 2020;73(1):94-101. doi: 10.1016/j.jhep.2020.02.033

 

  1. Bowlus CL, Pockros PJ, Kremer AE, et al. Long-term obeticholic acid therapy improves histological endpoints in patients with primary biliary cholangitis. Clin Gastroenterol Hepatol. 2020;18(5):1170-1178.e6. doi: 10.1016/j.cgh.2019.09.050

 

  1. Younossi ZM, Ratziu V, Loomba R, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: Interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2019;394(10215):2184-2196. doi: 10.1016/S0140-6736(19)33041-7

 

  1. Rinella ME, Dufour JF, Anstee QM, et al. Non-invasive evaluation of response to obeticholic acid in patients with NASH: Results from the REGENERATE study. J Hepatol. 2022;76(3):536-548. doi: 10.1016/j.jhep.2021.10.029

 

  1. Patel K, Harrison SA, Elkhashab M, et al. Cilofexor, a Nonsteroidal FXR agonist, in patients with noncirrhotic NASH: A phase 2 randomized controlled trial. Hepatology. 2020;72(1):58-71. doi: 10.1002/hep.31205

 

  1. Ratziu V, Harrison SA, Loustaud-Ratti V, et al. Hepatic and renal improvements with FXR agonist vonafexor in individuals with suspected fibrotic NASH. J Hepatol. 2023;78:479-492. doi: 10.1016/j.jhep.2022.10.023

 

  1. Fiorucci S, Biagioli M, Sepe V, Zampella A, Distrutti E. Bile acid modulators for the treatment of nonalcoholic steatohepatitis (NASH). Expert Opin Investig Drugs. 2020;29(6):623-632. doi: 10.1080/13543784.2020.1763302

 

  1. Siddiqui MS, Van Natta ML, Connelly MA, et al. Impact of obeticholic acid on the lipoprotein profile in patients with non-alcoholic steatohepatitis. J Hepatol. 2020;72(1):25-33. doi: 10.1016/j.jhep.2019.10.006

 

  1. Pockros PJ, Fuchs M, Freilich B, et al. CONTROL: A randomized phase 2 study of obeticholic acid and atorvastatin on lipoproteins in nonalcoholic steatohepatitis patients. Liver Int. 2019;39(11):2082-2093. doi: 10.1111/liv.14209

 

  1. Wang Y, Nakajima T, Gonzalez FJ, Tanaka N. PPARs as metabolic regulators in the liver: Lessons from liver-specific PPAR-null mice. Int J Mol Sci. 2020;21(6):2061. doi: 10.3390/ijms21062061

 

  1. Musso G, Cassader M, Paschetta E, Gambino R. Thiazolidinediones and advanced liver fibrosis in nonalcoholic steatohepatitis: A meta-analysis. JAMA Intern Med. 2017;177(5):633-640. doi: 10.1001/jamainternmed.2016.9607

 

  1. Kumar DP, Caffrey R, Marioneaux J, et al. The PPAR α/γ agonist saroglitazar improves insulin resistance and steatohepatitis in a diet induced animal model of nonalcoholic fatty liver disease. Sci Rep. 2020;10(1):9330. doi: 10.1038/s41598-020-66458-z

 

  1. Vuppalanchi R, Caldwell SH, Pyrsopoulos N, et al. Proof-of-concept study to evaluate the safety and efficacy of saroglitazar in patients with primary biliary cholangitis. J Hepatol. 2022;76(1):75-85. doi: 10.1016/j.jhep.2021.08.025

 

  1. Lefere S, Puengel T, Hundertmark J, et al. Differential effects of selective- and pan-PPAR agonists on experimental steatohepatitis and hepatic macrophages☆. J Hepatol. 2020;73(4):757-770. doi: 10.1016/j.jhep.2020.04.025

 

  1. Boyer-Diaz Z, Aristu-Zabalza P, Andrés-Rozas M, et al. Pan- PPAR agonist lanifibranor improves portal hypertension and hepatic fibrosis in experimental advanced chronic liver disease. J Hepatol. 2021;74(5):1188-1199. doi: 10.1016/j.jhep.2020.11.045

 

  1. Møllerhøj MB, Veidal SS, Thrane KT, et al. Hepatoprotective effects of semaglutide, lanifibranor and dietary intervention in the GAN diet-induced obese and biopsy-confirmed mouse model of NASH. Clin Transl Sci. 2022;15(5):1167-1186. doi: 10.1111/cts.13235

 

  1. Francque SM, Bedossa P, Ratziu V, et al. A Randomized, controlled trial of the Pan-PPAR agonist lanifibranor in NASH. N Engl J Med. 2021;385(17):1547-1558. doi: 10.1056/NEJMoa2036205

 

  1. Lin TT, Gao DY, Liu YC, et al. Development and characterization of sorafenib-loaded PLGA nanoparticles for the systemic treatment of liver fibrosis. J Control Release. 2016;221:62-70. doi: 10.1016/j.jconrel.2015.11.003

 

  1. Peng F, Tee JK, Setyawati MI, et al. Inorganic nanomaterials as highly efficient inhibitors of cellular hepatic fibrosis. ACS Appl Mater Interfaces. 2018;10(38):31938-31946. doi: 10.1021/acsami.8b10527

 

  1. Tran HT, Vong LB, Nishikawa Y, Nagasaki Y. Sorafenib-loaded silica-containing redox nanoparticles for oral anti-liver fibrosis therapy. J Control Release. 2022;345:880-891. doi: 10.1016/j.jconrel.2022.04.002

 

  1. Hong F, Tuyama A, Lee TF, et al. Hepatic stellate cells express functional CXCR4: role in stromal cell-derived factor-1alpha-mediated stellate cell activation. Hepatology. 2009;49(6):2055-2067. doi: 10.1002/hep.22890

 

  1. Wang S, Gao S, Li Y, Qian X, Luan J, Lv X. Emerging importance of chemokine receptor CXCR4 and its ligand in liver disease. Front Cell Dev Biol. 2021;9:716842. doi: 10.3389/fcell.2021.716842

 

  1. Tan HX, Gong WZ, Zhou K, et al. CXCR4/TGF-β1 mediated hepatic stellate cells differentiation into carcinoma-associated fibroblasts and promoted liver metastasis of colon cancer. Cancer Biol Ther. 2020;21(3):258-268. doi: 10.1080/15384047.2019.1685157

 

  1. Li R, Li Z, Feng Y, et al. PDGFRβ-targeted TRAIL specifically induces apoptosis of activated hepatic stellate cells and ameliorates liver fibrosis. Apoptosis. 2020;25(1-2):105-119. doi: 10.1007/s10495-019-01583-3

 

  1. Ribera J, Vilches C, Sanz V, et al. Treatment of hepatic fibrosis in mice based on targeted plasmonic hyperthermia. ACS Nano. 2021;15(4):7547-7562. doi: 10.1021/acsnano.1c00988

 

  1. Samuelsson E, Shen H, Blanco E, Ferrari M, Wolfram J. Contribution of Kupffer cells to liposome accumulation in the liver. Colloids Surf B Biointerfaces. 2017;158:356-362. doi: 10.1016/j.colsurfb.2017.07.014

 

  1. Ullah A, Wang K, Wu P, Oupicky D, Sun M. CXCR4- targeted liposomal mediated co-delivery of pirfenidone and AMD3100 for the treatment of TGFβ-induced HSC-T6 cells activation. Int J Nanomedicine. 2019;14:2927-2944. doi: 10.2147/IJN.S171280

 

  1. Fan QQ, Zhang CL, Qiao JB, et al. Extracellular matrix-penetrating nanodrill micelles for liver fibrosis therapy. Biomaterials. 2020;230:119616. doi: 10.1016/j.biomaterials.2019.119616

 

  1. Zhang LF, Wang XH, Zhang CL, et al. Sequential nano-penetrators of capillarized liver sinusoids and extracellular matrix barriers for liver fibrosis therapy. ACS Nano. 2022;16(9):14029-14042. doi: 10.1021/acsnano.2c03858

 

  1. Zhou L, Liang Q, Li Y, et al. Collagenase-I decorated co-delivery micelles potentiate extracellular matrix degradation and hepatic stellate cell targeting for liver fibrosis therapy. Acta Biomater. 2022;152:235-254. doi: 10.1016/j.actbio.2022.08.065

 

  1. Wu J, Xue X, Fan G, et al. Ferulic acid ameliorates hepatic inflammation and fibrotic liver injury by inhibiting PTP1B activity and subsequent promoting AMPK phosphorylation. Front Pharmacol. 2021;12:754976. doi: 10.3389/fphar.2021.754976

 

  1. Cheng Q, Li C, Yang CF, et al. Methyl ferulic acid attenuates liver fibrosis and hepatic stellate cell activation through the TGF-β1/Smad and NOX4/ROS pathways. Chem Biol Interact. 2019;299:131-139. doi: 10.1016/j.cbi.2018.12.006

 

  1. Xue T, Yue L, Zhu G, et al. An oral phenylacrylic acid derivative suppressed hepatic stellate cell activation and ameliorated liver fibrosis by blocking TGF-β1 signalling. Liver Int. 2023;43:718-73. doi: 10.1111/liv.15488

 

  1. Zhao XM, Zhang J, Liang YN, Niu YC. Astragaloside IV synergizes with ferulic acid to alleviate hepatic fibrosis in bile duct-ligated cirrhotic rats. Dig Dis Sci. 2020;65(10):2925-2936. doi: 10.1007/s10620-019-06017-3

 

  1. Sun X, Huang X, Zhu X, et al. HBOA ameliorates CCl4- incuded liver fibrosis through inhibiting TGF-β1/Smads, NF-κB and ERK signaling pathways. Biomed Pharmacother. 2019;115:108901. doi: 10.1016/j.biopha.2019.108901

 

  1. Wu L, Zhang Q, Mo W, et al. Quercetin prevents hepatic fibrosis by inhibiting hepatic stellate cell activation and reducing autophagy via the TGF-β1/Smads and PI3K/Akt pathways. Sci Rep. 2017;7(1):9289. doi: 10.1038/s41598-017-09673-5

 

  1. Liu N, Feng J, Lu X, et al. Isorhamnetin inhibits liver fibrosis by reducing autophagy and inhibiting extracellular matrix formation via the TGF-β1/Smad3 and TGF-β1/p38 MAPK pathways. Mediators Inflamm. 2019;2019:6175091. doi: 10.1155/2019/6175091

 

  1. Yu B, Qin SY, Hu BL, Qin QY, Jiang HX, Luo W. Resveratrol improves CCL4-induced liver fibrosis in mouse by upregulating endogenous IL-10 to reprogramme macrophages phenotype from M(LPS) to M(IL-4). Biomed Pharmacother. 2019;117:109110. doi: 10.1016/j.biopha.2019.109110

 

  1. Zhu L, Mou Q, Wang Y, Zhu Z, Cheng M. Resveratrol contributes to the inhibition of liver fibrosis by inducing autophagy via the microRNA20amediated activation of the PTEN/PI3K/AKT signaling pathway. Int J Mol Med. 2020;46(6):2035-2046. doi: 10.3892/ijmm.2020.4748

 

  1. Rong G, Chen Y, Yu Z, et al. Synergistic effect of Biejia- Ruangan on fibrosis regression in patients with chronic hepatitis B treated with entecavir: A multicenter, randomized, double-blind, placebo-controlled trial. J Infect Dis. 2022;225(6):1091-1099. doi: 10.1093/infdis/jiaa266

 

  1. Cheng DY, Zhao ZM, Wan G, et al. Impact of Fuzheng Huayu tablet on antiviral effect of entecavir in patients with hepatitis B cirrhosis. Hepatobiliary Pancreat Dis Int. 2022;21(5):479-484. doi: 10.1016/j.hbpd.2022.03.007

 

  1. Zhao ZM, Zhu CW, Huang JQ, et al. Efficacy and safety of Fuzheng Huayu tablet on persistent advanced liver fibrosis following 2 years entecavir treatment: A single arm clinical objective performance criteria trial. J Ethnopharmacol. 2022;298:115599. doi: 10.1016/j.jep.2022.115599

 

  1. Li XM, Peng JH, Sun ZL, et al. Chinese medicine CGA formula ameliorates DMN-induced liver fibrosis in rats via inhibiting MMP2/9, TIMP1/2 and the TGF-β/Smad signaling pathways. Acta Pharmacol Sin. 2016;37(6):783-793. doi: 10.1038/aps.2016.35

 

  1. Tian H, Liu L, Li Z, et al. Chinese medicine CGA formula ameliorates liver fibrosis induced by carbon tetrachloride involving inhibition of hepatic apoptosis in rats. J Ethnopharmacol. 2019;232:227-235. doi: 10.1016/j.jep.2018.11.027

 

  1. Wang Y, Li Y, Zhang H, et al. Pharmacokinetics-based comprehensive strategy to identify multiple effective components in Huangqi decoction against liver fibrosis. Phytomedicine. 2021;84:153513. doi: 10.1016/j.phymed.2021.153513

 

  1. Cheng Y, Liu P, Hou TL, Maimaitisidike M, Ababaikeli R, Abudureyimu A. Mechanisms of Huangqi decoction granules () on hepatitis B cirrhosis patients based on RNA-sequencing. Chin J Integr Med. 2019;25(7):507-514. doi: 10.1007/s11655-018-3013-3

 

  1. Zhou Y, Wu R, Cai FF, et al. Xiaoyaosan decoction alleviated rat liver fibrosis via the TGFβ/Smad and Akt/ FoxO3 signaling pathways based on network pharmacology analysis. J Ethnopharmacol. 2021;264:113021. doi: 10.1016/j.jep.2020.113021

 

  1. Lu Y, Li M, Zhou Q, et al. Dynamic network biomarker analysis and system pharmacology methods to explore the therapeutic effects and targets of Xiaoyaosan against liver cirrhosis. J Ethnopharmacol. 2022;294:115324. doi: 10.1016/j.jep.2022.115324

 

  1. Liang B, Gao L, Wang F, et al. The mechanism research on the anti-liver fibrosis of emodin based on network pharmacology. IUBMB Life. 2021;73(9):1166-1179. doi: 10.1002/iub.2523

 

  1. Tang YX, Liu M, Liu L, et al. Lipophilic constituents in salvia miltiorrhiza inhibit activation of the hepatic stellate cells by suppressing the JAK1/STAT3 signaling pathway: A network pharmacology study and experimental validation. Front Pharmacol. 2022;13:770344. doi: 10.3389/fphar.2022.770344

 

  1. Xiao HM, Shi MJ, Jiang JM, et al. Efficacy and safety of AnluoHuaxian pills on chronic hepatitis B with normal or minimally elevated alanine transaminase and early liver fibrosis: A randomized controlled trial. J Ethnopharmacol. 2022;293:115210. doi: 10.1016/j.jep.2022.115210

 

Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing