AccScience Publishing / EJMO / Online First / DOI: 10.36922/ejmo.7549
REVIEW ARTICLE

Polymorphisms in insulin regulation and type 2 diabetes: A narrative review of risk and management in Asian populations

Farizky Martriano Humardani1 Sulistyo Emantoko Dwi Putra2 Ratih Asmana Ningrum3 I. Wayan Arsana Wiyasa4 Lisa Thalia Mulyanata5 Risma Ikawaty5 Agustina Tri Endharti1*
Show Less
1 Doctoral Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
2 Department of Biotechnology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, Indonesia
3 Research Center for Genetic Engineering, National Research and Innovation Agency, Cibinong, Bogor, West Java, Indonesia
4 Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
5 Department of Biomedical Science, Faculty of Medicine, Universitas Surabaya, Raya Kalirungkut, Surabaya, East Java, Indonesia
EJMO 2025, 9(1), 76–91; https://doi.org/10.36922/ejmo.7549
Submitted: 14 December 2024 | Revised: 17 January 2025 | Accepted: 6 February 2025 | Published: 25 February 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The scientific literature extensively discusses the role of single nucleotide polymorphisms (SNPs) in the etiology of type 2 diabetes (T2D). However, the specific mechanisms linking SNPs to T2D remain incompletely understood. Historically, the development of T2D has been attributed to insulin resistance and dysfunction in insulin secretion. The primary aim of this review is to assess the risk of T2D based on its pathophysiology through genetic analysis, with a particular focus on Asian populations, given the ethnic variability in SNPs, and to propose personalized therapeutic strategies. This review identified SNPs involved in insulin regulation, including those related to insulin synthesis and secretion, insulin degradation, peripheral insulin sensitivity, and circadian rhythms. Furthermore, SNPs influencing the response to T2D medications, including biguanides, thiazolidinediones, non-sulfonylurea secretagogues, and sulfonylureas have been identified. Identification of SNPs associated with T2D risk and drug responses suggests that genetic screening could play a key role in both prevention and treatment, offering personalized strategies based on an individual’s genetic profile. Moreover, early identification of SNPs before disease manifestation presents an opportunity for prevention, as epigenetic factors influenced by lifestyle changes may alter disease risk. Further studies are needed to fully understand the mechanisms linking SNPs to T2D and to develop personalized therapies, with a particular focus on Asian populations.

Keywords
Insulin regulation
Risk assessment
Precision medicine
Single nucleotide polymorphisms
Type 2 diabetes
Funding
None.
Conflict of interest
The authors have no relevant financial or non-financial interests to disclose.
References
  1. Wu H, Patterson CC, Zhang X, et al. Worldwide estimates of incidence of type 2 diabetes in children and adolescents in 2021. Diabetes Res Clin Pract. 2022;185:109785. doi: 10.1016/j.diabres.2022.109785

 

  1. Klimczak S, Śliwińska A. Epigenetic regulation of inflammation in insulin resistance. Semin Cell Dev Biol. 2022;154(Pt C):185-192. doi: 10.1016/j.semcdb.2022.09.004

 

  1. Hahn O, Grönke S, Stubbs TM, et al. Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism. Genome Biol. 2017;18(1):1-18. doi: 10.1186/s13059-017-1187-1

 

  1. Javorsky M, Klimcakova L, Schroner Z, et al. KCNJ11 gene E23K variant and therapeutic response to sulfonylureas. Eur J Intern Med. 2012;23(3):245-249. doi: 10.1016/j.ejim.2011.10.018

 

  1. Kong X, Zhang X, Xing X, Zhang B, Hong J, Yang W. The association of type 2 diabetes loci identified in genome-wide association studies with metabolic syndrome and its components in a Chinese population with type 2 diabetes. PLoS One. 2015;10(11):e0143607. doi: 10.1371/journal.pone.0143607

 

  1. Elashi AA, Toor SM, Umlai UKI, et al. Genome-wide association study and trans-ethnic meta-analysis identify novel susceptibility loci for type 2 diabetes mellitus. BMC Med Genomics. 2024;17(1):131. doi: 10.1186/s12920-024-01903-w

 

  1. Cangelosi G, Acito M, Grappasonni I, et al. Yoga or mindfulness on diabetes: Scoping review for theoretical experimental framework. Ann Ig. 2024;36(2):153-168. doi: 10.7416/ai.2024.2600

 

  1. Nitert MD, Dayeh T, Volkov P, et al. Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes. 2012;61(12):3322-3332. doi: 10.2337/db11-1653

 

  1. Hu C, Zhang R, Wang C, et al. PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11- HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population. PLoS One. 2009;4(10):e7643. doi: 10.1371/journal.pone.0007643

 

  1. Suzuki K, Akiyama M, Ishigaki K, et al. Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat Genet. 2019;51(3):379-386. doi: 10.1038/s41588-018-0332-4

 

  1. Dimas AS, Lagou V, Barker A, et al. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes. 2014;63(6):2158-2171. doi: 10.2337/db13-0949

 

  1. Kulzer JR, Stitzel ML, Morken MA, et al. A common functional regulatory variant at a type 2 diabetes locus upregulates ARAP1 expression in the pancreatic beta cell. Am J Hum Genet. 2014;94(2):186-197. doi: 10.1016/j.ajhg.2013.12.011

 

  1. Ramzy A, Asadi A, Kieffer TJ. Revisiting proinsulin processing: Evidence that human β-cells process proinsulin with prohormone convertase (PC) 1/3 but not PC2. Diabetes. 2020;69(7):1451-1462. doi: 10.2337/db19-0276

 

  1. Jonsson A, Isomaa B, Tuomi T, Eriksson JG, Groop L, Lyssenko V. Effect of a common variant of the PCSK2 gene on reduced insulin secretion. Diabetologia. 2012;55(12): 3245-3251. doi: 10.1007/s00125-012-2728-5

 

  1. Mellado-Gil JM, Fuente-Martín E, Lorenzo PI, et al. The type 2 diabetes-associated HMG20A gene is mandatory for islet beta cell functional maturity. Cell Death Dis. 2018;9(3):279. doi: 10.1038/s41419-018-0272-z

 

  1. Jian X, Felsenfeld G. Insulin promoter in human pancreatic β cells contacts diabetes susceptibility loci and regulates genes affecting insulin metabolism. Proc Natl Acad Sci U S A. 2018;115(20):E4633-E4641. doi: 10.1073/pnas.1803146115

 

  1. Huang T, Wang L, Bai M, et al. Influence of IGF2BP2, HMG20A, and HNF1B genetic polymorphisms on the susceptibility to Type 2 diabetes mellitus in Chinese Han population. Biosci Rep. 2020;40(5):BSR20193955. doi: 10.1042/BSR20193955

 

  1. Regué L, Zhao L, Ji F, Wang H, Avruch J, Dai N. RNA m6A reader IMP2/IGF2BP2 promotes pancreatic β-cell proliferation and insulin secretion by enhancing PDX1 expression. Mol Metab. 2021;48:101209. doi: 10.1016/j.molmet.2021.101209

 

  1. Peiris H, Park S, Louis S, et al. Discovering human diabetes-risk gene function with genetics and physiological assays. Nat Commun. 2018;9(1):3855. doi: 10.1038/s41467-018-06249-3

 

  1. Jonsson A, Ladenvall C, Ahluwalia TS, et al. Effects of common genetic variants associated with type 2 diabetes and glycemic traits on α- and β-cell function and insulin action in humans. Diabetes. 2013;62(8):2978-2983. doi: 10.2337/db12-1627

 

  1. Simonis-Bik AM, Nijpels G, van Haeften TW, et al. Gene variants in the novel type 2 diabetes loci CDC123/CAMK1D, THADA, ADAMTS9, BCL11A, and MTNR1B affect different aspects of pancreatic β-cell function. Diabetes. 2010;59(1):293-301. doi: 10.2337/db09-1048

 

  1. Nicolson TJ, Bellomo EA, Wijesekara N, et al. Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes. 2009;58(9):2070-2083. doi: 10.2337/db09-0551

 

  1. Mitchell RK, Hu M, Chabosseau PL, et al. Molecular genetic regulation of Slc30a8/ZnT8 reveals a positive association with glucose tolerance. Mol Endocrinol. 2016;30(1):77-91. doi: 10.1210/me.2015-1227

 

  1. Kirchhoff K, Machicao F, Haupt A, et al. Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia. 2008;51(4):597-601. doi: 10.1007/s00125-008-0926-y

 

  1. Staiger H, Machicao F, Stefan N, et al. Polymorphisms within novel risk loci for type 2 diabetes determine β-cell function. PLoS One. 2007;2(9):e832. doi: 10.1371/journal.pone.0000832

 

  1. Zeng H, Guo M, Zhou T, et al. An isogenic human ESC platform for functional evaluation of genome-wide-association-study-identified diabetes genes and drug discovery. Cell Stem Cell. 2016;19(3):326-340. doi: 10.1016/j.stem.2016.07.002

 

  1. Bankura B, Pattanayak AK, Ghosh S, Guria S, Sinha A, Das M. Implication of KCNJ11 and TCF7L2 gene variants for the predisposition of type 2 diabetes mellitus in West Bengal, India. Diabetes Epidemiol Manag. 2022;6:100066. doi: 10.1016/j.deman.2022.100066

 

  1. Holmkvist J, Banasik K, Andersen G, et al. The Type 2 diabetes associated minor allele of rs2237895 KCNQ1 associates with reduced insulin release following an oral glucose load. PLoS One. 2009;4(6):e5872. doi: 10.1371/journal.pone.0005872

 

  1. Wu HH, Li YL, Liu NJ, et al. TCF7L2 regulates pancreatic β-cell function through PI3K/AKT signal pathway. Diabetol Metab Syndr. 2019;11:55. doi: 10.1186/s13098-019-0449-3

 

  1. Zhou Y, Park SY, Su J, et al. TCF7L2 is a master regulator of insulin production and processing. Hum Mol Genet. 2014;23(24):6419-6431. doi: 10.1093/hmg/ddu359

 

  1. Pang DX, Smith AJ, Humphries SE. Functional analysis of TCF7L2 genetic variants associated with type 2 diabetes. Nutr Metab Cardiovasc Dis. 2013;23(6):550-556. doi: 10.1016/j.numecd.2011.12.012

 

  1. Phu S, Thida A, Maung KK, Chit TT. Single nucleotide polymorphism at rs7903146 of transcription factor 7-like 2 gene among subjects with type 2 diabetes mellitus in Myanmar. J ASEAN Fed Endocr Soc. 2023;38(1):41-47. doi: 10.15605/jafes.037.S2

 

  1. Najjar SM, Perdomo G. Hepatic insulin clearance: Mechanism and physiology. Physiology (Bethesda). 2019;34(3):198-215. doi: 10.1152/physiol.00048.2018

 

  1. Duckworth WC, Bennett RG, Hamel FG. Insulin degradation: Progress and potential. Endocr Rev. 1998;19(5):608-624. doi: 10.1210/edrv.19.5.0349

 

  1. Kullenberg H, Rossen J, Johansson UB, et al. Increased levels of insulin-degrading enzyme in patients with type 2 diabetes mellitus. Endocrine. 2022;77(3):561-565. doi: 10.1007/s12020-022-03123-7

 

  1. Merino B, Fernández-Díaz CM, Parrado-Fernández C, et al. Hepatic insulin-degrading enzyme regulates glucose and insulin homeostasis in diet-induced obese mice. Metabolism. 2020;113:154352. doi: 10.1016/j.metabol.2020.154352

 

  1. De Luis DA, Izaola O, de la Fuente B, Primo D, Fernandez Ovalle H, Romero E. rs1501299 Polymorphism in the adiponectin gene and their association with total adiponectin levels, insulin resistance and metabolic syndrome in obese subjects. Ann Nutr Metab. 2016;69(3-4):226-231. doi: 10.1159/000453401

 

  1. De Luis DA, Izaola O, Primo D, Aller R. Relation of a variant in adiponectin gene (rs266729) with metabolic syndrome and diabetes mellitus type 2 in adult obese subjects. Eur Rev Med Pharmacol Sci. 2020;24(20):10646-10652. doi: 10.26355/eurrev_202010_23422

 

  1. Hung YJ, Lee CH, Chu NF, Shieh YS. Plasma protein growth arrest-specific 6 levels are associated with altered glucose tolerance, inflammation, and endothelial dysfunction. Diabetes Care. 2010;33(8):1840-1844. doi: 10.2337/dc09-1073

 

  1. Hsiao FC, Lin YF, Hsieh PS, et al. Circulating growth arrest-specific 6 protein is associated with adiposity, systemic inflammation, and insulin resistance among overweight and obese adolescents. J Clin Endocrinol Metab. 2013;98(2):E267-E274. doi: 10.1210/jc.2012-3179

 

  1. Su S, Chiang C, Hsieh C, et al. Growth arrest‐specific 6 modulates adiponectin expression and insulin resistance in adipose tissue. J Diabetes Investig. 2021;12(4):485-492. doi: 10.1111/jdi.13412

 

  1. Lee CH, Chu NF, Shieh YS, Hung YJ. The growth arrest-specific 6 (Gas6) gene polymorphism c.834+7G>A is associated with type 2 diabetes. Diabetes Res Clin Pract. 2012;95(2):201-206. doi: 10.1016/j.diabres.2011.09.013

 

  1. Chistiakov DA, Potapov VA, Khodirev DS, Shamkhalova MS, Shestakova MV, Nosikov VV. The PPARγ Pro12Ala variant is associated with insulin sensitivity in Russian normoglycaemic and type 2 diabetic subjects. Diab Vasc Dis Res. 2010;7(1):56-62. doi: 10.1177/1479164109347689

 

  1. Gong S, Han X, Li M, et al. Genetics and clinical characteristics of PPARγ variant-induced diabetes in a Chinese Han population. Front Endocrinol (Lausanne). 2021;12:677130. doi: 10.3389/fendo.2021.677130

 

  1. Li S, He C, Nie H, et al. G Allele of the rs1801282 polymorphism in PPARγ gene confers an increased risk of obesity and hypercholesterolemia, while T allele of the rs3856806 polymorphism displays a protective role against dyslipidemia: A systematic review and meta-analysis. Front Endocrinol (Lausanne). 2022;13:919087. doi: 10.3389/fendo.2022.919087

 

  1. Frederiksen L. Studies of the Pro12Ala polymorphism of the PPAR-gene in the Danish MONICA cohort: Homozygosity of the Ala Allele confers a decreased risk of the insulin resistance syndrome. J Clin Endocrinol Metab. 2002;87(8):3989-3992. doi: 10.1210/jcem.87.8.8732

 

  1. Tai ES, Corella D, Deurenberg-Yap M, et al. Differential effects of the C1431T and Pro12Ala PPARγ gene variants on plasma lipids and diabetes risk in an Asian population. J Lipid Res 2004;45:674-685. doi: 10.1194/jlr.M300363-JLR200

 

  1. Wang X, Liu J, Ouyang Y, Fang M, Gao H, Liu L. The Association between the Pro12Ala variant in the PPARγ2 Gene and type 2 diabetes mellitus and obesity in a Chinese Population. PLoS One. 2013;8(8):e71985. doi: 10.1371/journal.pone.0071985

 

  1. Hu W, Jiang C, Guan D, et al. Patient adipose stem cell-derived adipocytes reveal genetic variation that predicts antidiabetic drug response. Cell Stem Cell. 2019;24:299-308.e6. doi: 10.1016/j.stem.2018.11.018

 

  1. Soccio RE, Chen ER, Rajapurkar SR, et al. Genetic variation determines PPARγ function and anti-diabetic drug response in vivo. Cell. 2015;162(1):33-44. doi: 10.1016/j.cell.2015.06.025

 

  1. Zhou X, Wei LJ, Li JQ, et al. The Activation of peroxisome proliferator-activated receptor γ enhances insulin signaling pathways via up-regulating chemerin expression in high glucose treated HTR-8/SVneo cells. Matern Fetal Med. 2020;2:131-140. doi: 10.1097/FM9.0000000000000044

 

  1. Trombetta M, Bonetti S, Boselli ML, et al. PPARG2 Pro12Ala and ADAMTS9 rs4607103 as ‘insulin resistance loci’ and ‘insulin secretion loci’ in Italian individuals. The GENFIEV study and the Verona Newly Diagnosed Type 2 Diabetes Study (VNDS) 4. Acta Diabetol. 2013;50(3):401-408. doi: 10.1007/s00592-012-0443-9

 

  1. Boesgaard TW, Gjesing AP, Grarup N, et al. Variant near ADAMTS9 known to associate with type 2 diabetes is related to insulin resistance in offspring of type 2 diabetes patients - EUGENE2 study. PLoS One. 2009;4(9):e7236. doi: 10.1371/journal.pone.0007236

 

  1. Graae AS, Grarup N, Ribel-Madsen R, et al. ADAMTS9 regulates skeletal muscle insulin sensitivity through extracellular matrix alterations. Diabetes. 2019;68(3):502-514. doi: 10.2337/db18-0418

 

  1. Yang M, Ren Y, Lin Z, et al. Krüppel-like factor 14 increases insulin sensitivity through activation of PI3K/Akt signal pathway. Cell Signal. 2015;27(11):2201-2208. doi: 10.1016/j.cellsig.2015.07.019

 

  1. Small KS, Todorčević M, Civelek M, et al. Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition. Nat Genet. 2018;50(9):1342. doi: 10.1038/s41588-018-0180-2

 

  1. Besse-Patin A, Jeromson S, Levesque-Damphousse P, Secco B, Laplante M, Estall JL. PGC1A regulates the IRS1:IRS2 ratio during fasting to influence hepatic metabolism downstream of insulin. Proc Natl Acad Sci. 2019;116(10):4285-4290. doi: 10.1073/pnas.1815150116

 

  1. Kleiner S, Mepani RJ, Laznik D, et al. Development of insulin resistance in mice lacking PGC-1α in adipose tissues. Proc Natl Acad Sci U S A. 2012;109(24):9635-9640. doi: 10.1073/pnas.1207287109

 

  1. Bhatta P, Bermano G, Williams HC, Knott RM. Genomics meta-analysis demonstrates Gly482Ser variant of PPARGC1A is associated with components of metabolic syndrome within Asian populations. Genomics. 2020;112(2):1795-1803. doi: 10.1016/j.ygeno.2019.10.011

 

  1. Chibalin AV, Leng Y, Vieira E, et al. Downregulation of diacylglycerol kinase delta contributes to hyperglycemia-induced insulin resistance. Cell. 2008;132(3):375-386. doi: 10.1016/j.cell.2007.12.035

 

  1. Jiang LQ, de Castro Barbosa T, Massart J, et al. Diacylglycerol kinase-δ regulates AMPK signaling, lipid metabolism, and skeletal muscle energetics. Am J Physiol Endocrinol Metab. 2016;310(1):E51-60. doi: 10.1152/ajpendo.00209.2015

 

  1. Emanuelli B, Eberlé D, Suzuki R, Kahn CR. Overexpression of the dual-specificity phosphatase MKP-4/DUSP-9 protects against stress-induced insulin resistance. Proc Natl Acad Sci. 2008;105(9):3545-3550. doi: 10.1073/pnas.0712275105

 

  1. Fukuda H, Imamura M, Tanaka Y, et al. A Single nucleotide polymorphism within DUSP9 is associated with susceptibility to type 2 diabetes in a Japanese population. PLoS One. 2012;7(9):e46263. doi: 10.1371/journal.pone.0046263

 

  1. Al-Daghri NM, Al-Attas OS, Krishnaswamy S, et al. Association of type 2 diabetes mellitus related SNP genotypes with altered serum adipokine levels and metabolic syndrome phenotypes. Int J Clin Exp Med. 2015;8:4464-4471.

 

  1. Perelis M, Ramsey KM, Marcheva B, Bass J. Circadian transcription from beta cell function to diabetes pathophysiology. J Biol Rhythms. 2016;31(4):323-336. doi: 10.1177/0748730416656949

 

  1. Peschke E, Bähr I, Mühlbauer E. Melatonin and pancreatic islets: Interrelationships between melatonin, insulin and glucagon. Int J Mol Sci. 2013;14(4):6981-7015. doi: 10.3390/ijms14046981

 

  1. Tuomi T, Nagorny CLF, Singh P, et al. Increased melatonin signaling is a risk factor for type 2 diabetes. Cell Metab. 2016;23(6):1067-1077.doi: 10.1016/j.cmet.2016.04.009

 

  1. Lyssenko V, Nagorny CLF, Erdos MR, et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat Genet. 2009;41(1):82-88. doi: 10.1038/ng.288

 

  1. Liu C, Wu Y, Li H, et al. MTNR1B rs10830963 is associated with fasting plasma glucose, HbA1Cand impaired beta-cell function in Chinese Hans from Shanghai. BMC Med Genet. 2010;11:59. doi: 10.1186/1471-2350-11-59

 

  1. Ramírez AV, Flores-Saiffe Farías A, Chávez Álvarez RD, Prado Montes de Oca E. Predicted regulatory SNPs reveal potential drug targets and novel companion diagnostics in psoriasis. J Transl Autoimmun. 2021;4:100096. doi: 10.1016/j.jtauto.2021.100096

 

  1. Zhang LF, Pei Q, Yang GP, et al. The effect of IGF2BP2 gene polymorphisms on pioglitazone response in Chinese type 2 diabetes patients. Pharmacology. 2014;94(3-4):115-122. doi: 10.1159/000363414

 

  1. Huang Q, Yin JY, Dai XP, et al. IGF2BP2 variations influence repaglinide response and risk of type 2 diabetes in Chinese population. Acta Pharmacol Sin. 2010;31(6):709-717. doi: 10.1038/aps.2010.47

 

  1. Dujic T, Bego T, Malenica M, et al. Effects of TCF7L2 rs7903146 variant on metformin response in patients with type 2 diabetes. Bosn J Basic Med Sci. 2019;19(4):368-374. doi: 10.17305/bjbms.2019.4181

 

  1. Wang J, Kuusisto J, Vänttinen M, et al. Variants of transcription factor 7-like 2 (TCF7L2) gene predict conversion to type 2 diabetes in the Finnish Diabetes Prevention Study and are associated with impaired glucose regulation and impaired insulin secretion. Diabetologia. 2007;50(6):1192-1200. doi: 10.1007/s00125-007-0656-6

 

  1. Spainhour JC, Lim HS, Yi SV, Qiu P. Correlation patterns between DNA methylation and gene expression in the cancer genome atlas. Cancer Inform. 2019;18:1176935119828776. doi: 10.1177/1176935119828776

 

  1. Dhawan D, Padh H. Genetic variations in TCF7L2 influence therapeutic response to sulfonylureas in Indian diabetics. Diabetes Res Clin Pract. 2016;121:35-40. doi: 10.1016/j.diabres.2016.08.018

 

  1. Zhou X, Zhu J, Bao Z, et al. A variation in KCNQ1 gene is associated with repaglinide efficacy on insulin resistance in Chinese Type 2 diabetes mellitus patients. Sci Rep. 2016;6:37293. doi: 10.1038/srep37293

 

  1. Li Q, Tang TT, Jiang F, et al. Polymorphisms of the KCNQ1 gene are associated with the therapeutic responses of sulfonylureas in Chinese patients with type 2 diabetes. Acta Pharmacol Sin. 2017;38(1):80-89. doi: 10.1038/aps.2016.103

 

  1. Xu J, Zhang W, Song W, et al. Relationship between KCNQ1 polymorphism and type 2 diabetes risk in Northwestern China. Pharmgenomics Pers Med. 2021;14:1731-1751. doi: 10.2147/PGPM.S340813

 

  1. Yu XX, Liao MQ, Zeng YF, et al. Associations of KCNQ1 polymorphisms with the risk of type 2 diabetes mellitus: An updated meta-analysis with trial sequential analysis. J Diabetes Res. 2020;2020:7145139. doi: 10.1155/2020/7145139

 

  1. Shorokhova P, Baranov V, Vorokhobina N. Abstract #1001320: Effects of KCNJ11 RS5219 variant on metformin pharmacodynamics in patients with newly diagnosed type 2 diabetes mellitus. Endocr Pract. 2021;27:S39. doi: 10.1016/j.eprac.2021.04.553

 

  1. Reddy S, Maddhuri S, Nallari P, et al. Association of ABCC8 and KCNJ11 gene variants with type 1 diabetes in south Indians. Egypt J Med Hum Genet. 2021;22:27. doi: 10.1186/s43042-021-00149-w

 

  1. Huang Q, Yin JY, Dai XP, et al. Association analysis of SLC30A8 rs13266634 and rs16889462 polymorphisms with type 2 diabetes mellitus and repaglinide response in Chinese patients. Eur J Clin Pharmacol. 2010;66:1207-1215. doi: 10.1007/s00228-010-0882-6

 

  1. Zheng X, Ren W, Zhang S, et al. Association of type 2 diabetes susceptibility genes (TCF7L2, SLC30A8, PCSK1 and PCSK2) and proinsulin conversion in a Chinese population. Mol Biol Rep. 2012;39(1):17-23. doi: 10.1007/s11033-011-0705-6

 

  1. Chauhan G, Spurgeon CJ, Tabassum R, et al. Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2, and CDKAL1 on the risk of type 2 diabetes in 5,164 Indians. Diabetes. 2010;59(8):2068-2074. doi: 10.2337/db09-1386

 

  1. Tabara Y, Osawa H, Kawamoto R, et al. Replication study of candidate genes associated with type 2 diabetes based on genome-wide screening. Diabetes. 2009;58(2):493-498. doi: 10.2337/db07-1785

 

  1. Li Y, Wang X, Lu X. KCNQ 1 rs2237892 C→T gene polymorphism and type 2 diabetes mellitus in the Asian population: A meta‐analysis of 15,736 patients. J Cell Mol Med. 2014;18(2):274-282. doi: 10.1111/jcmm.12185

 

  1. Tan JT, Ng DP, Nurbaya S, et al. Polymorphisms identified through genome-wide association studies and their associations with type 2 diabetes in Chinese, Malays, and Asian-Indians in Singapore. J Clin Endocrinol Metab. 2010;95(1):390-397. doi: 10.1210/jc.2009-0688

 

  1. Hosoe J, Suzuki K, Miya F, et al. Structural basis of ethnic-specific variants of PAX4 associated with type 2 diabetes. Hum Genome Var. 2021;8(1):25. doi: 10.1038/s41439-021-00156-8

 

  1. Qian Y, Lu F, Dong M, et al. Cumulative effect and predictive value of genetic variants associated with type 2 diabetes in Han Chinese: A case-control study. PLoS One. 2015;10(1):e0116537. doi: 10.1371/journal.pone.0116537

 

  1. Dong F, Zhang B, Zheng S, et al. Association between SLC30A8 rs13266634 polymorphism and risk of T2DM and IGR in Chinese population: A systematic review and meta-analysis. Front Endocrinol (Lausanne). 2018;9:564. doi: 10.3389/fendo.2018.00564

 

  1. Ding W, Xu L, Zhang L, et al. Meta-analysis of association between TCF7L2 polymorphism rs7903146 and type 2 diabetes mellitus. BMC Med Genet. 2018;19(1):38. doi: 10.1186/s12881-018-0553-5

 

  1. Fan Y, Wang K, Xu S, et al. Association between adipoq +45t>G polymorphism and type 2 diabetes: A systematic review and meta-analysis. Int J Mol Sci. 2015;16(1):704-723. doi: 10.3390/ijms16010704

 

  1. Kazakova E, Zghuang T, Li T, Fang Q, Han J, Qiao H. Gas6 gene rs8191974 and Ap3s2 gene rs2028299 are associated with type 2 diabetes in the Northern Chinese Han population. Acta Biochim Pol. 2017;64(2):227-231. doi: 10.18388/abp.2016_1299

 

  1. Sarhangi N, Sharifi F, Hashemian L, et al. PPARG (Pro12Ala) genetic variant and risk of T2DM: A systematic review and meta-analysis. Sci Rep. 2020;10(1):12764. doi: 10.1038/s41598-020-69363-7

 

  1. Du F, Yang KJ, Piao LS. Correlation between PPARGC1A gene rs8192678 G>A polymorphism and susceptibility to type-2 diabetes. Open Life Sci. 2019;14:43-52. doi: 10.1515/biol-2019-0006

 

  1. Kong X, Xing X, Zhang X, Hong J, Yang W. Early‐onset type 2 diabetes is associated with genetic variants of β‐cell function in the Chinese Han population. Diabetes Metab Res Rev. 2020;36(2):e3214. doi: 10.1002/dmrr.3214

 

  1. Holstein A, Hahn M, Körner A, Stumvoll M, Kovacs P. TCF7L2 and therapeutic response to sulfonylureas in patients with type 2 diabetes. BMC Med Genet. 2011;12:30. doi: 10.1186/1471-2350-12-30
Share
Back to top
Eurasian Journal of Medicine and Oncology, Electronic ISSN: 2587-196X Print ISSN: 2587-2400, Published by AccScience Publishing