Research on hypoxia and the extracellular matrix in cancer: A visualization analysis

Hypoxia and the extracellular matrix (ECM) are critical drivers of metastasis. To comprehensively analyze the development of hypoxia and ECM in cancer and identify potential collaborative relationships, this study employs bibliometric methods to analyze and predict emerging hotspots and potential research directions. This study collected relevant research literature (published in English; 2007 – 2024) from the Web of Science Core Collection using bibliometrics. The research status, hotspots, frontiers, and trends in the field of “hypoxia and ECM and cancer” were analyzed using the R package (bibliometrix). CiteSpace and VOSviewer were employed for visualizing the analysis of authors, countries, institutions, keywords, and co-cited references. A total of 2199 authors from 39 countries contributed to 351 articles published in 201 journals in the research domain. From 2007 to 2024, there was an overall increasing trend, with an average annual growth rate of 13.54%. Developed countries, especially the United States of America (USA) made major contributions, while China, despite its high publication volume, lagged in quality compared to the USA. Notably, Johns Hopkins University demonstrated strong international collaboration. Cancer-associated fibroblast (CAF), tumor microenvironment, and cancer metabolism are current major research areas, with future directions in clinical therapy. The analysis of hypoxia and ECM in cancer using bibliometrics reveals a rapid development from 2007 to 2016. International collaboration has intensified through partnerships with developed countries, resulting in more in-depth research contributions from some developing countries. These research efforts mainly focus on pancreatic cancer, lung cancer, glioblastoma multiforme, and breast cancer. CAF and glucose metabolic reprogramming associated with hypoxia and ECM in cancer have garnered widespread attention. Research in these areas, particularly the challenges of clinical therapy resistance in triple-negative breast cancer closely associated with ECM, is expected to be key focal points in the future.

- Vaupel P. Prognostic potential of the pre-therapeutic tumor oxygenation status. Adv Exp Med Biol. 2009;645:241-246. doi: 10.1007/978-0-387-85998-9_36
- Vaupel P, Mayer A, Höckel M. Tumor hypoxia and malignant progression. Methods Enzymol. 2004;381:335-354. doi: 10.1016/S0076-6879(04)81023-1
- Madu CO, Wang S, Madu CO, Lu Y. Angiogenesis in breast cancer progression, diagnosis, and treatment. J Cancer. 2020;11(15):4474-4494. doi: 10.7150/jca.44313
- Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2010;29(5):625-634. doi: 10.1038/onc.2009.441
- Vaupel P, Höckel M, Mayer A. Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal. 2007;9(8):1221-1235. doi: 10.1089/ars.2007.1628
- Zhang T, Suo C, Zheng C, Zhang H. Hypoxia and Metabolism in Metastasis Series. In: Gilkes DM. Hypoxia and Cancer Metastasis. Cham: Springer International Publishing; 2019. p. 87-95.
- Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123(Pt 24):4195-4200. doi: 10.1242/jcs.023820
- Gkretsi V, Stylianopoulos T. Cell adhesion and matrix stiffness: Coordinating cancer cell invasion and metastasis. Front Oncol. 2018;8:145. doi: 10.3389/fonc.2018.00145
- Li X, Wang J. Mechanical tumor microenvironment and transduction: Cytoskeleton mediates cancer cell invasion and metastasis. Int J Biol Sci. 2020;16(12):2014-2028. doi:10.7150/ijbs.44943
- Stanton AE, Tong X, Yang F. Extracellular matrix type modulates mechanotransduction of stem cells. Acta Biomater. 2019;96:310-320. doi: 10.1016/j.actbio.2019.06.048
- Walker C, Mojares E, Del Río Hernández A. Role of extracellular matrix in development and cancer progression. Int J Mol Sci. 2018;19(10):3028. doi: 10.3390/ijms19103028
- Pickett MR, Chen YI, Kamra M, et al. Assessing the impact of extracellular matrix fiber orientation on breast cancer cellular metabolism. Cancer Cell Int. 2024;24(1):199. doi: 10.1186/s12935-024-03385-3
- Willumsen N, Leitzel K, Ali SM, et al. Extracellular matrix (ECM) protein fragments in serum and outcomes in two metastatic breast cancer cohorts. J Clin Oncol. 2017;35(15 Suppl):1085-1085. doi: 10.1002/ijc.31627
- Gilkes DM, Semenza GL, Wirtz D. Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nat Rev Cancer. 2014;14(6):430-439. doi: 10.1038/nrc3726
- Chaw L, Chien LC, Wong J, Takahashi K, Koh D, Lin RT. Global trends and gaps in research related to latent tuberculosis infection. BMC Public Health. 2020;20(1):352. doi: 10.1186/s12889-020-8419-0
- Devos P, Ménard J. Trends in worldwide research in hypertension over the period 1999–2018. Hypertension. 2020;76(5):1649-1655. doi: 10.1161/HYPERTENSIONAHA.120.15711
- Ninkov A, Frank JR, Maggio LA. Bibliometrics: Methods for studying academic publishing. Perspect Med Educ. 2022;11(3):173-176. doi: 10.1007/s40037-021-00695-4
- Pertz M, Popkirov S, Schlegel U, Thoma P. Research on cognitive and sociocognitive functions in patients with brain tumours: A bibliometric analysis and visualization of the scientific landscape. Neurol Sci. 2020;41(6):1437-1449.
- Zhou R, Lin X, Liu D, et al. Research hotspots and trends analysis of TFEB: A bibliometric and scientometric analysis. Front Mol Neurosci. 2022;15:854954. doi: 10.3389/fnmol.2022.854954
- Chen C. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc Natl Acad Sci U S A. 2004;101 Suppl 1(Suppl 1):5303-5310. doi: 10.1073/pnas.0307513100
- Chen S, Zhang Y, Dai W, et al. Publication trends and hot spots in postoperative cognitive dysfunction research: A 20-year bibliometric analysis. J Clin Anesth. 2020;67:110012. doi: 10.1016/j.jclinane.2020.110012
- Zhou Q, Pei J, Poon J, et al. Worldwide research trends on aristolochic acids (1957-2017): Suggestions for researchers. PLoS One, 2019;14(5):e0216135. doi: 10.1371/journal.pone.0216135
- Chen C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inform Sci Technol. 2006;57(3):359-377. doi: 10.1002/asi.20317
- Chen C, Dubin R, Kim MC. Emerging trends and new developments in regenerative medicine: A scientometric update (2000-2014). Expert Opin Biol Ther. 2014;14(9):1295- 1317 doi: 10.1517/14712598.2014.920813
- Chen C, Hu Z, Liu S, Tseng H. Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opin Biol Ther. 2012;12(5):593-608. doi: 10.1517/14712598.2012.674507
- Chen C, Song M. Visualizing a field of research: A methodology of systematic scientometric reviews. PLoS One, 2019;14(10):e0223994. doi: 10.1371/journal.pone.0223994
- van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(2):523-538. doi: 10.1007/s11192-009-0146-3
- Wu J, Chen Y, Chen L, et al. Global research trends on anti-PD-1/anti-PD-L1 immunotherapy for triple-negative breast cancer: A scientometric analysis. Front Oncol. 2023;12:1002667. doi: 10.3389/fonc.2022.1002667
- Aria M, Cuccurullo C. bibliometrix: An R-tool for comprehensive science mapping analysis. J Inform. 2017;11(4):959-975.
- Zhu J, Liang Q, He S, et al. Research trends and hotspots of neurodegenerative diseases employing network pharmacology: A bibliometric analysis. Front Pharmacol. 2023;13:1109400. doi: 10.3389/fphar.2022.1109400
- Bertoli-Barsotti L, Lando T. A theoretical model of the relationship between the h-index and other simple citation indicators. Scientometrics. 2017;111(3):1415-1448. doi: 10.1007/s11192-017-2351-9
- Hirsch JE. An index to quantify an individual’s scientific research output. Proc Natl Acad Sci. 2005;102(46):16569- 16572. doi: 10.1073/pnas.0507655102
- Ali MJ. Understanding the “g-index” and the “e-index”. Semin Ophthalmol. 2021;36(4):139. doi: 10.1080/08820538.2021.1922975
- Kakkad SM, Solaiyappan M, O’Rourke B, et al. Hypoxic tumor microenvironments reduce collagen I fiber density. Neoplasia. 2010;12(8):608-617. doi: 10.1593/neo.10344
- Zhou L, Chen J, Li Z, et al. Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27.3 associate with clear cell renal cell carcinoma. PLoS One. 2010;5(12):e15224. doi: 10.1371/journal.pone.0015224
- Yeung KT, Yang J. Epithelial-mesenchymal transition in tumor metastasis. Mol Oncol. 2017;11(1):28-39. doi: 10.1002/1878-0261.12017
- Schito L, Rey S, Tafani M, et al. Hypoxia-inducible factor 1-dependent expression of platelet-derived growth factor B promotes lymphatic metastasis of hypoxic breast cancer cells. Proc Natl Acad Sci. 2012;109(40):E2707-E2716. doi: 10.1073/pnas.1214019109
- Schito L, Semenza GL. Hypoxia-inducible factors: Master regulators of cancer progression. Trends Cancer. 2016;2(12):758-770.doi: 10.1016/j.trecan.2016.10.016
- Wong CCL, Zhang H, Gilkes DM, et al. Inhibitors of hypoxia-inducible factor 1 block breast cancer metastatic niche formation and lung metastasis. J Mol Med (Berl). 2012;90(7):803-815. doi: 10.1007/s00109-011-0855-y
- Shirakihara T, Horiguchi K, Miyazawa K, et al. TGF‐β regulates isoform switching of FGF receptors and epithelial-mesenchymal transition. EMBO J. 2011;30(4):783-795. doi: 10.1038/emboj.2010.351
- Wu MJ, Chen YS, Kim MR, et al. Epithelial-mesenchymal transition directs stem cell polarity via regulation of mitofusin. Cell Metab. 2019;29(4):993-1002.e1006. doi: 10.1016/j.cmet.2018.11.004
- Emami Nejad A, Najafgholian S, Rostami A, et al. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: A novel approach to developing treatment. Cancer Cell Int. 2021;21(1):62. doi: 10.1186/s12935-020-01719-5
- Goodarzi H, Liu X, Nguyen HC, Zhang S, Fish L, Tavazoie SF. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell. 2015;161(4):790-802. doi: 10.1016/j.cell.2015.02.053
- Gilkes DM, Bajpai S, Chaturvedi P, Wirtz D, Semenza GL. Withdrawal: Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J Biol Chem. 2023;299(9):105144. doi: 10.1074/jbc.M112.442939
- Wang T, Gilkes DM, Takano N, et al. Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proc Natl Acad Sci. 2014;111(31):E3234-E3242. doi: 10.1073/pnas.1410041111
- Monteran L, Ershaid N, Doron H, et al. Chemotherapy-induced complement signaling modulates immunosuppression and metastatic relapse in breast cancer. Nat Commun. 2022;13(1):5797. doi: 10.1038/s41467-022-33598-x
- Kciuk M, Gielecińska A, Mujwar S, et al. Doxorubicin-an agent with multiple mechanisms of anticancer activity. Cells. 2023;12(4):659. doi: 10.3390/cells12040659
- Sun Z, Zhou D, Yang J, Zhang D. Doxorubicin promotes breast cancer cell migration and invasion via DCAF13. FEBS Open Bio. 2022;12(1):221-230. doi: 10.1002/2211-5463.13330
- Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101-124. doi: 10.1038/s41573-020-0090-8
- Panagi M, Voutouri C, Mpekris F, et al. TGF-β inhibition combined with cytotoxic nanomedicine normalizes triple negative breast cancer microenvironment towards anti-tumor immunity. Theranostics. 2020;10(4):1910-1922. doi: 10.7150/thno.36936
- Shen Z, Ma Q, Zhou X, et al. Strategies to improve photodynamic therapy efficacy by relieving the tumor hypoxia environment. NPG Asia Mater. 2021;13(1):39.
- Zhang C, Qin WJ, Bai XF, Zhang XZ. Nanomaterials to relieve tumor hypoxia for enhanced photodynamic therapy. Nano Today. 2020;35:100960. doi: 10.1016/j.phrs.2022.106551
- Zhang T, Wang X, Wang D, et al. Synergistic effects of photodynamic therapy and chemotherapy: Activating the intrinsic/extrinsic apoptotic pathway of anoikis for triple-negative breast cancer treatment. Biomater Adv. 2024;160:213859. doi: 10.1016/j.bioadv.2024.213859
- Xiang L, Gilkes DM, Hu H, et al. Hypoxia-inducible factor 1 mediates TAZ expression and nuclear localization to induce the breast cancer stem cell phenotype. Oncotarget. 2014;5(24):12509-12527. doi: 10.18632/oncotarget.2997
- Bierbaumer L, Katschnig AM, Radic-Sarikas B, et al. YAP/ TAZ inhibition reduces metastatic potential of Ewing sarcoma cells. Oncogenesis. 2021;10(1):2.
- Rytlewski JD, Scalora N, Garcia K, et al. Photodynamic therapy using hippo pathway inhibitor verteporfin: A potential dual mechanistic approach in treatment of soft tissue sarcomas. Cancers (Basel). 2021;13(4):675. doi: 10.3390/cancers13040675
- Wei L, Ma X, Hou Y, et al. Verteporfin reverses progestin resistance through YAP/TAZ-PI3K-Akt pathway in endometrial carcinoma. Cell Death Discov. 2023;9(1):30. doi: 10.1038/s41420-023-01319-y
- Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74(1):12-49. doi: 10.3322/caac.21820
- Januškevičienė I, Petrikaitė V. Heterogeneity of breast cancer: The importance of interaction between different tumor cell populations. Life Sci. 2019;239:117009. doi: 10.1016/j.lfs.2019.117009
- Hu D, Li Z, Zheng B, et al. Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Commun (Lond). 2022;42(5):401-434. doi: 10.1002/cac2.12291
- Tang X, Hou Y, Yang G, et al. Stromal miR-200s contribute to breast cancer cell invasion through CAF activation and ECM remodeling. Cell Death Differ. 2016;23(1):132-145. doi: 10.1038/cdd.2015.78
- Qiu ZW, Zhong YT, Lu ZM, et al. Breaking physical barrier of fibrotic breast cancer for photodynamic immunotherapy by remodeling tumor extracellular matrix and reprogramming cancer-associated fibroblasts. ACS Nano. 2024;18(13):9713- 9735. doi: 10.1021/acsnano.4c01499
- De Vita A, Liverani C, Molinaro R, et al. Lysyl oxidase engineered lipid nanovesicles for the treatment of triple negative breast cancer. Sci Rep. 2021;11(1):5107. doi: 10.1038/s41598-021-84492-3
- Chen D, Wang W, Zhu Q, et al. In vivo real-time monitoring of the development of hypoxia and angiogenesis in cervical cancer. Chem Eng J. 2023;473:145498.
- Yang M, Mu Y, Yu X, et al. Survival strategies: How tumor hypoxia microenvironment orchestrates angiogenesis. Biomed Pharmacother. 2024;176:116783. doi: 10.1016/j.biopha.2024.116783
- Magar AG, Morya VK, Kwak MK, Oh JU, Noh KC. A molecular perspective on HIF-1α and angiogenic stimulator networks and their role in solid tumors: An update. Int J Mol Sci. 2024;25(6):3313.
- Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146(6):873-887. doi: 10.1016/j.cell.2011.08.039
- Tang E, Wang Y, Liu T, Yan B. Gastrin promotes angiogenesis by activating HIF-1α/β-catenin/VEGF signaling in gastric cancer. Gene. 2019;704:42-48. doi: 10.1016/j.gene.2019.04.029
- Zhang QW, Lin XL, Dai ZH, et al. Hypoxia and low-glucose environments co-induced HGDILnc1 promote glycolysis and angiogenesis. Cell Death Discov. 2024;10(1):132. doi: 10.1038/s41420-024-01903-w
- Lebel M, Cliche DO, Charbonneau M, et al. Hypoxia promotes invadosome formation by lung fibroblasts. Cells. 2024;13(13):1152. doi: 10.3390/cells13131152
- Ganapathy-Kanniappan S, Geschwind JF. Tumor glycolysis as a target for cancer therapy: Progress and prospects. Mol Cancer. 2013;12:152. doi: 10.1186/1476-4598-12-152
- Tennant DA, Durán RV, Gottlieb E. Targeting metabolic transformation for cancer therapy. Nat Rev Cancer. 2010;10(4):267-277. doi: 10.1038/nrc2817
- Yeung SJ, Pan J, Lee MH. Roles of p53, Myc and HIF-1 in regulating glycolysis-the seventh hallmark of cancer. Cell Mol Life Sci. 2008;65(24):3981. doi: 10.1007/s00018-008-8224-x
- Végran F, Boidot R, Michiels C, Sonveaux P, Feron O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 2011;71(7):2550- 2560. doi: 10.1158/0008-5472.CAN-10-2828
- Ciavardelli D, Rossi C, Barcaroli D, et al. Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment. Cell Death Dis. 2014;5(7):e1336. doi: 10.1038/cddis.2014.285
- Sullivan R, Paré GC, Frederiksen LJ, Semenza GL, Graham CH. Hypoxia-induced resistance to anticancer drugs is associated with decreased senescence and requires hypoxia-inducible factor-1 activity. Mol Cancer Ther. 2008;7(7):1961- 1973. doi: 10.1158/1535-7163.MCT-08-0198
- Chen X, Qian Y, Wu S. The Warburg effect: Evolving interpretations of an established concept. Free Radic Biol Med. 2015;79:253-263. doi: 10.1016/j.freeradbiomed.2014.08.027
- Ruckenstuhl C, Büttner S, Carmona-Gutierrez D, et al. The Warburg effect suppresses oxidative stress induced apoptosis in a yeast model for cancer. PLoS One. 2009;4(2):e4592. doi: 10.1371/journal.pone.0004592
- Anastasiou D, Poulogiannis G, Asara JM, et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science. 2011;334(6060):1278-1283. doi: 10.1126/science.1211485
- Hamanaka RB, Chandel NS. Cell biology. Warburg effect and redox balance. Science. 2011;334(6060):1219-1220. doi: 10.1126/science.1215637
- Handy DE, Loscalzo J. Redox regulation of mitochondrial function. Antioxid Redox Signal. 2012;16(11):1323-1367. doi: 10.1089/ars.2011.4123
- Liu J, Levens D. Making myc. Curr Top Microbiol Immunol. 2006;302:1-32. doi: 10.1007/3-540-32952-8_1
- Luo W, Hu H, Chang R, et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 2011;145(5):732-744. doi: 10.1016/j.cell.2011.03.054
- Ceylan-Isik AF, Guo KK, Carlson EC, et al. Metallothionein abrogates GTP cyclohydrolase I inhibition-induced cardiac contractile and morphological defects: Role of mitochondrial biogenesis. Hypertension. 2009;53(6):1023-1031. doi: 10.1161/HYPERTENSIONAHA.108.123422
- Gentric G, Mieulet V, Mechta-Grigoriou F. Heterogeneity in cancer metabolism: New concepts in an old field. Antioxid Redox Signal. 2017;26(9):462-485. doi: 10.1089/ars.2016.6750
- Schmidt MW, Connolly JA, Günther D, Bogaerts M. Element partitioning: The role of melt structure and composition. Science. 2006;312(5780):1646-1650. doi: 10.1126/science.1126690
- Won KY, Lim SJ, Kim GY, et al. Regulatory role of p53 in cancer metabolism via SCO2 and TIGAR in human breast cancer. Hum Pathol. 2012;43(2):221-228. doi: 10.1016/j.humpath.2011.04.021
- Gilkes DM, Bajpai S, Wong CC, et al. Retraction: Procollagen lysyl hydroxylase 2 is essential for hypoxia-induced breast cancer metastasis. Mol Cancer Res. 2023;21(10):1120. doi: 10.1158/1541-7786.MCR-12-0629
- Ju JA, Godet I, Ye IC, et al. Hypoxia selectively enhances integrin α5β1 receptor expression in breast cancer to promote metastasis. Mol Cancer Res. 2017;15(6):723-734. doi: 10.1158/1541-7786.MCR-16-0338
- Lu P, Weaver VM, Werb Z. The extracellular matrix: A dynamic niche in cancer progression. J Cell Biol. 2012;196(4):395-406. doi: 10.1083/jcb.201102147
- Dekker Y, Le Dévédec SE, Danen EHJ, Liu Q. Crosstalk between hypoxia and extracellular matrix in the tumor microenvironment in breast cancer. Genes. 2022;13(9):1585. doi: 10.3390/genes13091585
- Jing X, Yang F, Shao C, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 2019;18(1):157. doi: 10.1186/s12943-019-1089-9
- Pola C, Formenti SC, Schneider RJ. Vitronectin-αvβ3 integrin engagement directs hypoxia-resistant mTOR activity and sustained protein synthesis linked to invasion by breast cancer cells. Cancer Res. 2013;73(14):4571-4578. doi: 10.1158/0008-5472.CAN-13-0218
- Lv F, Lian Y, Tao L, et al. Self-reinforcing nano-spearhead drives the efficacy of CAR-T cells against progressive triple negative breast cancer. Mater Today. 2024;76:9-27.
- Sada M, Ohuchida K, Horioka K, et al. Hypoxic stellate cells of pancreatic cancer stroma regulate extracellular matrix fiber organization and cancer cell motility. Cancer Lett. 2016;372(2):210-218. doi: 10.1016/j.canlet.2016.01.016
- Topalovski M, Hagopian M, Wang M, Brekken RA. Hypoxia and transforming growth factor β cooperate to induce fibulin-5 expression in pancreatic Cancer This work was supported in part by American Cancer Society Grant RSG-10-244-01-CSM (to R. A. B.), the Joe and Jessie Crump Medical Research Foundation (to R. A. B.), National Institutes of Health Grants R01 CA118240 (to R. A. B.) and T32 GM008203 (to M. T.), and the Effie Marie Cain Scholarship in Angiogenesis Research (to R. A. B.). R. A. B. is a co-founder of Tuevol Therapeutics, a company that is developing therapeutics that target the tumor microenvironment. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. J Biol Chem. 2016;291(42):22244-22252.
- Li Z, Mo F, Guo K, et al. Nanodrug-bacteria conjugates-mediated oncogenic collagen depletion enhances immune checkpoint blockade therapy against pancreatic cancer. Med. 2024;5(4):348-367.e347. doi: 10.1016/j.medj.2024.02.012
- Ando A, Hashimoto N, Sakamoto K, et al. Repressive role of stabilized hypoxia inducible factor 1α expression on transforming growth factor β-induced extracellular matrix production in lung cancer cells. Cancer Sci. 2019;110(6):1959-1973. doi: 10.1111/cas.14027
- Sarma K, Akther MH, Ahmad I, et al. Adjuvant novel nanocarrier-based targeted therapy for lung cancer. Molecules. 2024;29(5):1076. doi: 10.3390/molecules29051076
- Mao XG, Xue XY, Lv R, et al. CEBPD is a master transcriptional factor for hypoxia regulated proteins in glioblastoma and augments hypoxia induced invasion through extracellular matrix-integrin mediated EGFR/PI3K pathway. Cell Death Dis. 2023;14(4):269. doi: 10.1038/s41419-023-05788-y
- Miroshnikova YA, Mouw JK, Barnes JM, et al. Tissue mechanics promote IDH1-dependent HIF1α-tenascin C feedback to regulate glioblastoma aggression. Nat Cell Biol. 2016;18(12):1336-1345. doi: 10.1038/ncb3429
- Tse APW, Sze KMF, Shea QTK, et al. Hepatitis transactivator protein X promotes extracellular matrix modification through HIF/LOX pathway in liver cancer. Oncogenesis. 2018;7(5):44.doi: 10.1038/s41389-018-0052-8
- Penet MF, Kakkad S, Pathak AP, et al. Structure and function of a prostate cancer dissemination-permissive extracellular matrix. Clin Cancer Res. 2017;23(9):2245-2254. doi: 10.1158/1078-0432.CCR-16-1516
- McKenzie S, Sakamoto S, Kyprianou N. Maspin modulates prostate cancer cell apoptotic and angiogenic response to hypoxia via targeting AKT. Oncogene. 2008;27(57):7171-7179. doi: 10.1038/onc.2008.321
- Rahbari NN, Kedrin D, Incio J, et al. Anti-VEGF therapy induces ECM remodeling and mechanical barriers to therapy in colorectal cancer liver metastases. Sci Transl Med. 2016;8(360):360ra135. doi: 10.1126/scitranslmed.aaf5219