Differential Expression of DDX3 and microRNAs in Response to Hormone and Cisplatin Against Cervical Cancer
Objectives: To discover micro ribonucleic acids (miRNAs) involved in the regulation of DDX3 expression using sexual hormones in combination with the well-known anticancer medication cisplatin.
Methods: SiHa cells were treated with estradiol, dihydrotestosterone, and cisplatin and evaluated the expression of ER beta, Ki67, and DDX3 via quantitative reverse transcription–polymerase chain reaction. We generated a chimeric fusion construct five untranslated region (UTR)–hLUC–3UTR in the pEZX-MT06 miRNA vector under the control of the SV40 promoter. Reporter activity is measured with/without hormones, and their activity is compared with 5'- and 3'-UTR respectively. Various reporter deletion constructs were generated to identify the minimal UTR region in regulating the expression of DDX3. We identified the potential miRNA binding sites on the DDX3 UTR region, and their expression is monitored in cancer patients and cisplatin-treated SiHa cells.
Results: Hormones increased the proliferation of SiHa cells and expression of DDX3. The 3'-UTR region 2135–4307bp contains miRNA sites that regulate DDX3 expression. miRNAs hsa-miR-671-5p, hsa-miR-361-5p, hsa-miR-140-5p, hsamiR-564, and hsa-miR-769-5p downregulated in patient samples but upregulated in cisplatin-treated cells. miRNA hsamiR-671-5p and hsa-miR-564 were associated with patient data and cisplatin-treated cancer cells.
Conclusion: We discovered that sexual hormones enhanced DDX3 expression in SiHa cells. MiR-671-5p and miR-564 are two potential therapeutic miRNAs that can be used to treat DDX3-related malignancies.
1. Linder P. Yeast RNA helicases of the DEAD-box family involved in translation initiation. Biol Cell 2003;95:157–67. [CrossRef]
2. Rosner A, Rinkevich B. The DDX3 subfamily of the DEAD box helicases: Divergent roles as unveiled by studying different organisms and in vitro assays. Curr Med Chem 2007;14:2517–25.
3. Botlagunta M, Vesuna F, Mironchik Y, Raman A, Lisok A, Winnard P, et al. Oncogenic role of DDX3 in breast cancer biogenesis. Oncogene 2008;27:3912–22. [CrossRef]
4. Samal SK, Routray S, Veeramachaneni GK, Dash R, Botlagunta M. Ketorolac salt is a newly discovered DDX3 inhibitor to treat oral cancer. Sci Rep 2015;5:9982. [CrossRef]
5. Lee CH, Lin SH, Yang SF, Yang SM, Chen MK, Lee H, et al. Low/ negative expression of DDX3 might predict poor prognosis in non-smoker patients with oral cancer. Oral Dis 2014;20:76–83.
6. He Y, Zhang D, Yang Y, Wang X, Zhao X, Zhang P, et al. A double-edged function of DDX3, as an oncogene or tumor suppressor, in cancer progression (Review). Oncol Rep 2018;39:883–92. [CrossRef]
7. Wu DW, Lee MC, Wang J, Chen CY, Cheng YW, Lee H. DDX3 loss by p53 inactivation promotes tumor malignancy via the MDM2/Slug/E-cadherin pathway and poor patient outcome in non-small-cell lung cancer. Oncogene 2014;33:1515–26.
8. Wu DW, Liu WS, Wang J, Chen CY, Cheng YW, Lee H. Reduced p21(WAF1/CIP1) via alteration of p53-DDX3 pathway is associated with poor relapse-free survival in early-stage human papillomavirus-associated lung cancer. Clin Cancer Res 2011;17:1895–905. [CrossRef]
9. Heerma van Voss MR, Vesuna F, Trumpi K, Brilliant J, Berlinicke C, de Leng W, et al. Identification of the DEAD box RNA helicase DDX3 as a therapeutic target in colorectal cancer. Oncotarget 2015;6:28312–26. [CrossRef]
10. Tantravedi S, Vesuna F, Winnard PT, Martin A, Lim M, Eberhart CG, et al. Targeting DDX3 in medulloblastoma using the small molecule inhibitor RK-33. Transl Oncol 2019;12:96–105.
11. Sun M, Song L, Zhou T, Gillespie GY, Jope RS. The role of DDX3 in regulating Snail. Biochim Biophys Acta Mol Cell Res 2011;1813:438–47. [CrossRef]
12. Heerma van Voss MR, Schrijver WAME, ter Hoeve ND, Hoefnagel LD, Manson QF, van der Wall E, et al. The prognostic effect of DDX3 upregulation in distant breast cancer metastases. Clin Exp Metastasis 2016;34:85–92.
13. Bol GM, Raman V, van der Groep P, Vermeulen JF, Patel AH, van der Wall E, et al. Expression of the RNA helicase DDX3 and the hypoxia response in breast cancer. PLoS One 2013;8:e63548.
14. Chahar HS, Chen S, Manjunath N. P-body components LSM1, GW182, DDX3, DDX6 and XRN1 are recruited to WNV replication sites and positively regulate viral replication. Virology 2013;436:1–7.
15. Luo Y, Na Z, Slavoff SA. P-Bodies: Composition, properties, and functions. Biochemistry 2018;57:2424–31. [CrossRef]
16. Vellky JE, McSweeney ST, Ricke EA, Ricke WA. RNA-binding protein DDX3 mediates posttranscriptional regulation of androgen receptor: A mechanism of castration resistance. Proc Natl Acad Sci U S A 2020;117:28092–101. [CrossRef]
17. Guo FF, Zhao RJ, Li DJ, Xu ZG, Kong LF. Role of up-regulated DDX3 in the proliferation of human cervical cancer cells. Zhonghua Bing Li Xue Za Zhi 2021;50:119–24.
18. Hussain MU. Micro-RNAs (miRNAs): genomic organisation, biogenesis and mode of action. Cell Tissue Res 2012;349:405–13.
19. Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res 2019;47:155–62. [CrossRef]
20. Friedländer MR, Lizano E, Houben AJS, Bezdan D, Báñez-Coronel M, Kudla G, et al. Evidence for the biogenesis of more than 1,000 novel human microRNAs. Genome Biol 2014;15:R57.
21. Aziz NB, Mahmudunnabi RG, Umer M, Sharma S, Rashid MA, Alhamhoom Y, et al. MicroRNAs in ovarian cancer and recent advances in the development of microRNA-based biosensors. Analyst 2020;145:2038–57. [CrossRef]
22. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature 2005;435:834–8. [CrossRef]
23. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, et al. Reduced expression of the let-7 MicroRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004;64:3753–6.
24. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005;435:839–43. [CrossRef]
25. Paranjape T, Slack FJ, Weidhaas JB. MicroRNAs: tools for cancer diagnostics. Gut 2009;58:1546–54. [CrossRef]
26. Shi Y, Liu Z, Lin Q, Luo Q, Cen Y, Li J, et al. MiRNAs and cancer: Key link in diagnosis and therapy. Genes (Basel) 2021;12:1289.
27. Ahonen MH, Zhuang YH, Aine R, Ylikomi T, Tuohimaa P. Androgen receptor and vitamin D receptor in human ovarian cancer: growth stimulation and inhibition by ligands. Int J Cancer 2000;86:40–6.
28. Tian JM, Ran B, Zhang CL, Yan DM, Li XH. Estrogen and progesterone promote breast cancer cell proliferation by inducing cyclin G1 expression. Braz J Med Biol Res 2018;51:1–7.
29. Chen Y, Wang X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res 2020;48:127– 31. [CrossRef]
30. Huang HY, Lin YCD, Li J, Huang KY, Shrestha S, Hong HC, et al. miRTarBase 2020: Updates to the experimentally validated microRNA–target interaction database. Nucleic Acids Res 2020;48:148–54. [CrossRef]
31. Hellberg D. Sex steroids and cervical cancer. Anticancer Res 2012;32:3045–54.
32. Brinton LA, Moghissi KS, Westhoff CL, Lamb EJ, Scoccia B. Cancer risk among infertile women with androgen excess or menstrual disorders (including polycystic ovary syndrome). Fertil Steril 2010;94:1787–92. [CrossRef]
33. López-Romero R, Garrido-Guerrero E, Rangel-López A, Manuel-Apolinar L, Piña-Sánchez P, Lazos-Ochoa M, et al. The cervical malignant cells display a down regulation of ER-α but retain the ER-β expression. Int J Clin Exp Pathol 2013;6:1594– 602.
34. Lin HY, Sun M, Lin C, Tang HY, London D, Shih A, et al. Androgen-induced human breast cancer cell proliferation is mediated by discrete mechanisms in estrogen receptor-alpha-positive and -negative breast cancer cells. J Steroid Biochem Mol Biol 2009;113:182–8. [CrossRef]
35. Fan Q, Huang T, Sun X, Yang X, Wang J, Liu Y, et al. miR-130a-3p promotes cell proliferation and invasion by targeting estrogen receptor α and androgen receptor in cervical cancer. Exp Ther Med 2021;21:414. [CrossRef]
36. Ding L, Liu C, Zhou QIN, Feng M, Wang J. Association of estradiol and HPV/HPV16 infection with the occurrence of cervical squamous cell carcinoma. Oncol Lett 2019;17:3548–54.
37. Arnold JT, Liu X, Allen JD, Le H, McFann KK, Blackman MR. Androgen receptor or estrogen receptor-beta blockade alters DHEA-, DHT-, and E(2)-induced proliferation and PSA production in human prostate cancer cells. Prostate 2007;67:1152– 62. [CrossRef]
38. Cárdenas H, Pope WF. Attenuation of estrogenic effects by dihydrotestosterone in the pig uterus is associated with downregulation of the estrogen receptors. Biol Reprod 2004;70:297–302.
39. Tan X, Fu Y, Chen L, Lee W, Lai Y, Rezaei K, et al. miR-671-5p inhibits epithelial-to-mesenchymal transition by downregulating FOXM1 expression in breast cancer. Oncotarget 2016;7:293–307. [CrossRef]
40. Xin C, Lu S, Li Y, Zhang Y, Tian J, Zhang S, et al. miR-671-5p inhibits tumor proliferation by blocking cell cycle in osteosarcoma. DNA Cell Biol 2019;38:996–1004. [CrossRef]
41. Tan X, Li Z, Ren S, Rezaei K, Pan Q, Goldstein AT, et al. Dynamically decreased miR-671-5p expression is associated with oncogenic transformation and radiochemoresistance in breast cancer. Breast Cancer Res 2019;21:89.
42. Liu H, Liu X. LINC01207 is up-regulated in gastric cancer tissues and promotes disease progression by regulating miR671-5p/DDX5 axis. J Biochem 2021;170:337–47. [CrossRef]
43. Pillai MM, Gillen AE, Yamamoto TM, Kline E, Brown J, Flory K, et al. HITS-CLIP reveals key regulators of nuclear receptor signaling in breast cancer. Breast Cancer Res Treat 2014;146:85–97.
44. Wu D, Zhang J, Lu Y, Bo S, Li L, Wang L, et al. miR-140-5p inhibits the proliferation and enhances the efficacy of doxorubicin to breast cancer stem cells by targeting Wnt1. Cancer Gene Ther 2019;26:74–82. [CrossRef]