Mitotic Spindle as Therapeutic Target for Tetraploid Cancer Cells
Tetraploidy constitutes a genomically metastable state that drives oncogenesis by leading aneuploidy. Tetraploid sub-population is frequently found in pre-neoplastic lesions. This particular population is relatively more resistant against DNA damaging agents and in consequence, it is important to selectively target tetraploid cancer cells. Here, we listed all the studies that targeted preferentially tetraploid tumors cells focusing on mitosis machinery, essentially the spindle pole apparatus and the spindle assembly checkpoint pathways.
1.Weaver BA, Cleveland DW. Does aneuploidy cause cancer? Curr Opin Cell Biol 2006;18:658–67. [CrossRef]
2. van Jaarsveld RH, Kops GJPL. Difference Makers: Chromosomal Instability versus Aneuploidy in Cancer. Trends Cancer 2016;2:561–71. [CrossRef]
3. Vitale I, Galluzzi L, Senovilla L, Criollo A, Jemaa M, Castedo M, et al. Illicit survival of cancer cells during polyploidization and depolyploidization. Cell Death Differ 2011;18:1403–13. [CrossRef]
4. Potapova TA, Zhu J, Li R. Aneuploidy and chromosomal instability: a vicious cycle driving cellular evolution and cancer genome chaos. Cancer Metastasis Rev 2013;32:377–89. [CrossRef]
5. Storchova Z, Kuffer C. The consequences of tetraploidy and an-euploidy. J Cell Sci 2008;121:3859–66. [CrossRef]
6. Rello-Varona S, Vitale I, Kepp O, Senovilla L, Jemaá M, Métivier D, et al. Preferential killing of tetraploid tumor cells by targeting the mitotic kinesin Eg5. Cell Cycle 2009;8:1030–5. [CrossRef]
7. Vitale I, Galluzzi L, Castedo M, Kroemer G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol 2011;12:385–92. [CrossRef]
8. Senovilla L, Vitale I, Martins I, Tailler M, Pailleret C, Michaud M, et al. An immunosurveillance mechanism controls cancer cell ploidy. Science 2012;337:1678–84. [CrossRef]
9. Chunduri NK, Storchová Z. The diverse consequences of aneuploidy. Nat Cell Biol 2019;21:54–62. [CrossRef]
10. Lee AJ, Endesfelder D, Rowan AJ, Walther A, Birkbak NJ, Futreal PA, et al. Chromosomal instability confers intrinsic multidrug resistance. Cancer Res 2011;71:1858–70. [CrossRef]
11. Bakhoum SF, Ngo B, Laughney AM, Cavallo JA, Murphy CJ, Ly P, et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 2018;553:467–72. [CrossRef]
12. Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet 2006;38:1043–8. [CrossRef]
13. Fu J, Hagan IM, Glover DM. The centrosome and its duplication cycle. Cold Spring Harb Perspect Biol 2015;7:a015800. [CrossRef]
14. Rivera-Rivera Y, Saavedra HI. Centrosome - a promising anticancer target. Biologics 2016;10:167–76. [CrossRef]
15. Wojcik EJ, Buckley RS, Richard J, Liu L, Huckaba TM, Kim S. Kinesin-5: cross-bridging mechanism to targeted clinical therapy. Gene 2013;531:133–49. [CrossRef]
16. Kwon M, Godinho SA, Chandhok NS, Ganem NJ, Azioune A, Thery M, et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 2008;22:2189– 203. [CrossRef]
17. Zitouni S, Nabais C, Jana SC, Guerrero A, Bettencourt-Dias M. Polo-like kinases: structural variations lead to multiple functions. Nat Rev Mol Cell Biol 2014;15:433–52. [CrossRef]
18. Jemaà M, Kifagi C, Serrano SS, Massoumi R. Preferential killing of tetraploid colon cancer cells by targeting the mitotic kinase PLK1. Cell Physiol Biochem 2020;54:303–20. [CrossRef]
19. Lara-Gonzalez P, Westhorpe FG, Taylor SS. The spindle assembly checkpoint. Curr Biol 2012;22:R966–80. [CrossRef]
20. Manic G, Corradi F, Sistigu A, Siteni S, Vitale I. Molecular regulation of the spindle assembly checkpoint by kinases and phosphatases. Int Rev Cell Mol Biol 2017;328:105–61. [CrossRef]
21. Jemaà M, Galluzzi L, Kepp O, Senovilla L, Brands M, Boemer U, et al. Characterization of novel MPS1 inhibitors with preclinical anticancer activity. Cell Death Differ 2013;20:1532–45. [CrossRef]
22. Liu X, Winey M. The MPS1 family of protein kinases. Annu Rev Biochem 2012;81:561–85. [CrossRef]
23. von Schubert C, Cubizolles F, Bracher JM, Sliedrecht T, Kops GJPL, Nigg EA. Plk1 and Mps1 cooperatively regulate the spindle assembly checkpoint in human cells. Cell Rep 2015;12:66– 78. [CrossRef]
24. Jemaà M, Manic G, Lledo G, Lissa D, Reynes C, Morin N, et al. Whole-genome duplication increases tumor cell sensitivity to MPS1 inhibition. Oncotarget 2016;7:885–901. [CrossRef]
25. Libouban MAA, de Roos JADM, Uitdehaag JCM, WillemsenSeegers N, Mainardi S, Dylus J, et al. Stable aneuploid tumors cells are more sensitive to TTK inhibition than chromosomally unstable cell lines. Oncotarget 2017;8:38309–25. [CrossRef]
26. Marxer M, Foucar CE, Man WY, Chen Y, Ma HT, Poon RY. Tetraploidization increases sensitivity to Aurora B kinase inhibition. Cell Cycle 2012;11:2567–77. [CrossRef]
27. Yan M, Wang C, He B, Yang M, Tong M, Long Z, et al. Aurora-A kinase: a potent oncogene and target for cancer therapy. Med Res Rev 2016;36:1036–79. [CrossRef]
28. Patil M, Pabla N, Dong Z. Checkpoint kinase 1 in DNA damage response and cell cycle regulation. Cell Mol Life Sci 2013;70:4009–21. [CrossRef]
29. Vitale I, Galluzzi L, Vivet S, Nanty L, Dessen P, Senovilla L, et al. Inhibition of Chk1 kills tetraploid tumor cells through a p53- dependent pathway. PLoS One 2007;2:e1337.