Repurposing existing drugs for cancer stem cell-directed therapy
Cancer stem cells (CSCs) pose a significant challenge in tumor treatment due to their ability to remain quiescent during therapy and thus evade chemo- and radio-therapy. In addition, their ability to initiate tumor formation from a single cell is another essential factor to consider when developing a strategy to eradicate CSCs. Given that developing novel drugs is a time-consuming and costly process, drug repurposing has become an increasingly utilized and appealing alternative in recent research. Drug repurposing involves testing existing medications that have already completed substantial portions of drug development for the treatment of new medical conditions. Artificial intelligence tools can assist in this process. This review presents a series of compounds, initially developed for a wide range of conditions, including antidiabetic, antipsychotic, anti-inflammatory, cholesterol-lowering, and antiparasitic drugs, that can be repurposed as targeted therapies for CSCs. Metformin and doxycycline have also been evaluated in clinical studies targeting CSCs. Furthermore, novel artificial intelligence tools will be vital for predicting the potential of repurposed drugs before in vitro and in vivo testing.
- Li JT, Gu A, Tang NN, Zengin G, Li MY, Liu Y. Patient-derived xenograft models in pan-cancer: From bench to clinic. Interd Med. 2025;3(5):e20250016. doi: 10.1002/INMD.20250016
- Derfi KV, Vasiljevic T, Glavan TM. Recent advances in the targeting of head and neck cancer stem cells. Appl Sci. 2023;13(24):13293. doi: 10.3390/app132413293
- Ghorbian S. Cancer cell plasticity and therapeutic resistance: Mechanisms, crosstalk, and translational perspectives. Hereditas. 2025;162(1):188. doi: 10.1186/s41065-025-00564-8
- Chaffer CL, Marjanovic ND, Lee T, et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell. 2013;154(1):61-74. doi: 10.1016/j.cell.2013.06.005
- Dirkse A, Golebiewska A, Buder T, et al. Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment. Nat Commun. 2019;16;10(1):1787. doi: 10.1038/s41467-019-09853-z
- Guo QQ, Zhou Y, Xie TY, et al. Tumor microenvironment of cancer stem cells: Perspectives on cancer stem cell targeting. Genes Dis. 2024;11(3):101043. doi: 10.1016/j.gendis.2023.05.024
- Zheng XB, Yu CN, Xu MQ. Linking tumor microenvironment to plasticity of cancer stem cells: Mechanisms and application in cancer therapy. Front Oncol. 2021;11:678333. doi: 10.3389/fonc.2021.678333
- Lee H, Kim B, Park J, et al. Cancer stem cells: landscape, challenges and emerging therapeutic innovations. Signal Transduct Tar.2025;10(1):248. doi: 10.1038/s41392-025-02360-2
- Rabinovich I, Sebastiao APM, Lima RS, et al. Cancer stem cell markers ALDH1 and CD44+/CD24- phenotype and their prognosis impact in invasive ductal carcinoma. Eur J Histochem. 2018;62(3):2943. doi: 10.4081/ejh.2018.2943
- LaBarge MA, Bissell MJ. Is CD133 a marker of metastatic colon cancer stem cells? J Clin Invest. 2008;118(6):2021-2024. doi: 10.1172/JCI36046
- Brown TC, Sankpal NV, Gillanders WE. Functional implications of the dynamic regulation of EpCAM during epithelial-to-mesenchymal transition. Biomolecules. 2021;11(7):956. doi: 10.3390/biom11070956
- Swain N, Thakur M, Pathak J, et al. SOX2, OCT4 and NANOG: The core embryonic stem cell pluripotency regulators in oral carcinogenesis. J Oral Maxillofac Pathol. 2020;24(2):368-373. doi: 10.4103/jomfp.JOMFP_22_20
- Varlakhanova NV, Cotterman RF, deVries WN, et al. myc maintains embryonic stem cell pluripotency and self-renewal. Differentiation. 2010;80(1):9-19. doi: 10.1016/j.diff.2010.05.001
- Takebe N, Miele L, Harris PJ, et al. Targeting notch, hedgehog, and Wnt pathways in cancer stem cells: Clinical update. Nat Rev Clin Oncol. 2015;12(8):445-464. doi: 10.1038/nrclinonc.2015.61
- Charafe-Jauffret E, Ginestier C, Iovino F, et al. Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res. 2010;16(1):45-55. doi: 10.1158/1078-0432.CCR-09-1630
- Zhang Q, Feng YJ, Kennedy D. Multidrug-resistant cancer cells and cancer stem cells hijack cellular systems to circumvent systemic therapies, can natural products reverse this? Cell Mol Life Sci. 2017;74(5):777-801. doi: 10.1007/s00018-016-2362-3
- Haddadin L, Sun XQ. Stem cells in cancer: From mechanisms to therapeutic strategies. Cells. 2025;14(7):538. doi: 10.3390/cells14070538
- Barghash RF, Fawzy IM, Chandrasekar V, Singh AV, Katha U, Mandour AA. In silico modeling as a perspective in developing potential vaccine candidates and therapeutics for COVID-19. Coatings. 2021;11(11):1273. doi: 10.3390/coatings11111273
- Recino A, Rayner MLD, Rohn JL, Pasqua OD, UCL Repurposing TIN Committee. Therapeutic innovation in drug repurposing: Challenges and opportunities. Drug Discov Today. 2025;30(7):104390. doi: 10.1016/j.drudis.2025.104390
- Zeng M, Wu B, Wei W, et al. Disulfiram: A novel repurposed drug for cancer therapy. Chin Med J (Engl). 2024;137(12):1389-1398. doi: 10.1097/CM9.0000000000002909
- Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 2009;69(19):7507-7511. doi: 10.1158/0008-5472.CAN-09-2994
- Pathak Y, Camps I, Yadav M, Mishra A, Upadhyay J, Tripathi V. Lumacaftor as a potential repurposed drug in targeting breast cancer stem cells: Insights from in silico study. J Mol Model. 2024;30(7):227. doi: 10.1007/s00894-024-05990-5
- Vasiljevic T, Zapletal E, Tarle M, et al. Targeting DAMPs by aspirin inhibits head and neck cancer stem cells and stimulates radio-sensitization to proton therapy. Cancers (Basel). 2025;17(13):2157. doi: 10.3390/cancers17132157
- Derfi KV, Vasiljevic T, Dragicevic T, Glavan TM. Mithramycin targets head and neck cancer stem cells by inhibiting Sp1 and UFMylation. Cancer Cell Int. 2024;24(1):412. doi: 10.1186/s12935-024-03609-6
- Brown JR, Chan DK, Shank JJ, et al. Phase II clinical trial of metformin as a cancer stem cell-targeting agent in ovarian cancer. Jci Insight. 2020;5(11):e133247. doi: 10.1172/jci.insight.133247
- Kucinska M, Pospieszna J, Tang J, et al. The combination therapy using tyrosine kinase receptors inhibitors and repurposed drugs to target patient-derived glioblastoma stem cells. Biomed Pharmacother. 2024;176:116892. doi: 10.1016/j.biopha.2024.116892
- Yamamoto M, Suzuki S, Togashi K, et al. AS602801, an anticancer stem cell candidate drug, reduces survivin expression and sensitizes A2780 ovarian cancer stem cells to carboplatin and paclitaxel. Anticancer Res. 2018;38(12):6699-6706. doi: 10.21873/anticanres.13038
- Tung MC, Lin YW, Lee WJ, et al. Targeting DRD2 by the antipsychotic drug, penfluridol, retards growth of renal cell carcinoma via inducing stemness inhibition and autophagy-mediated apoptosis. Cell Death Dis. 2022;13(4):400. doi: 10.1038/s41419-022-04828-3
- Antona A, Varalda M, Roy K, et al. Dissecting the mechanism of action of spiperone-a candidate for drug repurposing for colorectal cancer. Cancers (Basel). 2022;14(3):776. doi: 10.3390/cancers14030776
- Yang CE, Lee WY, Cheng HW, et al. The antipsychotic chlorpromazine suppresses YAP signaling, stemness properties, and drug resistance in breast cancer cells. Chem Biol Interact. 2019;312:108812. doi: 10.1016/j.cbi.2019.108812
- Chinnapaka S, Bakthavachalam V, Munirathinam G. Repurposing antidepressant sertraline as a pharmacological drug to target prostate cancer stem cells: Dual activation of apoptosis and autophagy signaling by deregulating redox balance. Am J Cancer Res. 2020;10(7):2043-2065.
- Gor R, Gharib A, Dharshini Balaji P, Madhavan T, Ramalingam A. Inducing cytotoxicity in colon cancer cells and suppressing cancer stem cells by dolasetron and ketoprofen through inhibition of RNA binding protein PUM1. Toxics. 2023;11(8):669. doi: 10.3390/toxics11080669
- Leung WH, Shih JW, Chen JS, Mokgautsi N, Wei PL, Huang YJ. Preclinical identification of Sulfasalazine’s therapeutic potential for suppressing colorectal cancer stemness and metastasis through targeting KRAS/MMP7/ CD44 signaling. Biomedicines. 2022;10(2):377. doi: 10.3390/biomedicines10020377
- Park S, Park JM, Park M, et al. β-Escin overcomes trastuzumab resistance in HER2-positive breast cancer by targeting cancer stem-like features. Cancer Cell Int. 2022;22(1):289. doi: 10.1186/s12935-022-02713-9
- Joe NS, Godet I, Milki N, et al. Mebendazole prevents distant organ metastases in part by decreasing ITGbeta4 expression and cancer stemness. Breast Cancer Res. 2022;24(1):98. doi: 10.1186/s13058-022-01591-3
- Lei X, Wang Y, Chen Y, Duan J, Gao X, Cong Z. Fenbendazole exhibits antitumor activity against cervical cancer through dual targeting of cancer cells and cancer stem cells: Evidence from in vitro and in vivo models. Molecules. 2025;30(11):2377. doi: 10.3390/molecules30112377
- Bansard L, Bouvet O, Moutin E, et al. Niclosamide induces miR-148a to inhibit PXR and sensitize colon cancer stem cells to chemotherapy. Stem Cell Reports. 2022;17(4):835-848. doi: 10.1016/j.stemcr.2022.02.005
- Amadasu E, Kang R, Usmani A, Borlongan CV. Effects of lovastatin on brain cancer cells. Cell Transplant. 2022;31:9636897221102903. doi: 10.1177/09636897221102903
- Su TR, Yu CC, Chao SC, et al. Fenofibrate diminishes the self-renewal and metastasis potentials of oral carcinoma stem cells through NF-kappaB signaling. J Formos Med Assoc. 2022;121(10):1900-1907. doi: 10.1016/j.jfma.2022.01.014
- Yu JS, Shin DH, Kim JS. Repurposing of fluvastatin as an anticancer agent against breast cancer stem cells via encapsulation in a hyaluronan-conjugated liposome. Pharmaceutics. 2020;12(12):1133. doi: 10.3390/pharmaceutics12121133
- Lopez-Tejada A, Blaya-Canovas JL, Cara FE, et al. Signature-based repurposed drugs resemble the inhibition of TGFbeta-induced NDRG1 as potential therapeutics for triple-negative breast cancer. Int J Biol Sci. 2025;21(9): 3949-3967. doi: 10.7150/ijbs.112645
- Marni R, Malla M, Chakraborty A, et al. Proteomic profiling and ROC analysis identify CD151 and ELAVL1 as potential therapy response markers for the antiviral drug in resistant TNBC. Life Sci. 2023;320:121534. doi: 10.1016/j.lfs.2023.121534
- Talukdar PD, Roy H, Chatterji U. Targeting breast cancer stem cells in ER-positive breast cancer by repurposing the benzoporphyrin derivative verteporfin as a YAP/TAZ small molecule inhibitor. Mol Biol Rep. 2025;52(1):154. doi: 10.1007/s11033-025-10264-1
- Mediratta K, El-Sahli S, Marotel M, et al. Targeting CD73 with flavonoids inhibits cancer stem cells and increases lymphocyte infiltration in a triple-negative breast cancer mouse model. Front Immunol. 2024;15:1366197. doi: 10.3389/fimmu.2024.1366197
- Pathak Y, Camps I, Mishra A, Tripathi V. Targeting notch signaling pathway in breast cancer stem cells through drug repurposing approach. Mol Divers. 2023;27(6):2431-2440. doi: 10.1007/s11030-022-10561-y
- Cui J, Li W, Bu W, et al. Folic acid-modified disulfiram/ Zn-IRMOF3 nanoparticles for oral cancer therapy by inhibiting ALDH1A1+ cancer stem cells. Biomater Adv. 2022;139:213038. doi: 10.1016/j.bioadv.2022.213038
- Lee PJ, Ho CC, Ho H, et al. Tumor microenvironment-based screening repurposes drugs targeting cancer stem cells and cancer-associated fibroblasts. Theranostics. 2021;11(19):9667-9686. doi: 10.7150/thno.62676
- Iannelli F, Roca MS, Lombardi R, et al. Synergistic antitumor interaction of valproic acid and simvastatin sensitizes prostate cancer to docetaxel by targeting CSCs compartment via YAP inhibition. J Exp Clin Cancer Res. 2020;39(1):213. doi: 10.1186/s13046-020-01723-7
- Samuel SM, Varghese E, Koklesova L, Líšková A, Kubatka P, Büsselberg D. Counteracting chemoresistance with metformin in breast cancers: Targeting cancer stem cells. Cancers (Basel). 2020;12(9):2482. doi: 10.3390/cancers12092482
- Fiorillo M, Toth F, Brindisi M, Sotgia F, Lisanti MP. Deferiprone (DFP) targets cancer stem cell (CSC) propagation by inhibiting mitochondrial metabolism and inducing ROS production. Cells. 2020;9(6):1529. doi: 10.3390/cells9061529
- Velazquez-Quesada I, Ruiz-Moreno AJ, Casique-Aguirre D, et al. Pranlukast antagonizes CD49f and reduces stemness in triple-negative breast cancer cells. Drug Des Devel Ther. 2020;14:1799-1811. doi: 10.2147/DDDT.S247730
- Ahmed M, Jinks N, Babaei-Jadidi R, et al. Repurposing antibacterial AM404 as a potential anticancer drug for targeting colorectal cancer stem-like cells. Cancers (Basel). 2019;12(1):106. doi: 10.3390/cancers12010106
- Burban A, Sharanek A, Hernandez-Corchado A, Najafabadi HS, Soleimani VD, Jahani-Asl A. Targeting glioblastoma with a brain-penetrant drug that impairs brain tumor stem cells via NLE1-Notch1 complex. Stem Cell Reports. 2024;19(11):1534-1547. doi: 10.1016/j.stemcr.2024.09.007
- Liang ML, Chen CH, Lin YC, et al. Abemaciclib impairs glioblastoma sphere formation by targeting the GSK3beta-mediated transcriptional regulation of CD44 and TCF7L2. Cancer Gene Ther. 2025;32(10):1120-1132. doi: 10.1038/s41417-025-00955-z
- Shih JW, Wu ATH, Mokgautsi N, Wei PL, Huang PY. Preclinical repurposing of sitagliptin as a drug candidate for colorectal cancer by targeting CD24/CTNNB1/SOX4- centered signaling hub. Int J Mol Sci. 2024;25(1):609. doi: 10.3390/ijms25010609
- Seo J, Park M, Ko D, et al. Ebastine impairs metastatic spread in triple-negative breast cancer by targeting focal adhesion kinase. Cell Mol Life Sci. 2023;80(5):132. doi: 10.1007/s00018-023-04760-5
- Roth IM, Wickremesekera AC, Wickremesekera SK, Davis PF, Tan ST. Therapeutic targeting of cancer stem cells via modulation of the renin-angiotensin system. Front Oncol. 2019;9:745. doi: 10.3389/fonc.2019.00745
- Lozanovski VJ, Houben P, Hinz U, Hackert T, Herr I, Schemmer P. Pilot study evaluating broccoli sprouts in advanced pancreatic cancer (POUDER trial) - study protocol for a randomized controlled trial. Trials. 2014;15:204. doi: 10.1186/1745-6215-15-204
