ORIGINAL RESEARCH ARTICLE

MXene-montmorillonite nanocomposites-based scaffold sensors for early pancreatic cancer diagnosis

Mahek Sadiq1 Quyen N.K. Hoang1 Aaron Kishlock2 Farnia Ghafouri Sabzevari3 Kalpana Katti1,2,4 Dinesh Katti1,4 Qifeng Zhang1,2,5 Danling Wang1,2,5*
Show Less
1 Biomedical Engineering Program, North Dakota State University, Fargo, North Dakota, United States of America
2 Materials and Nanotechnology Program, North Dakota State University, Fargo, North Dakota, United States of America
3 Cellular and Molecular Biology, North Dakota State University, Fargo, North Dakota, United States of America
4 Department of Civil, Construction, and Environmental Engineering, College of Engineering, North Dakota State University, Fargo, North Dakota, United States of America
5 Department of Electrical and Computer Engineering, College of Engineering, North Dakota State University, Fargo, North Dakota, United States of America
CP 2024, 6(3), 3793
Submitted: 30 May 2024 | Accepted: 28 August 2024 | Published: 9 October 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Pancreatic cancer is increasingly prevalent and characterized by a high mortality rate. Due to the limitations of current diagnostic methods, early-stage detection remains elusive, contributing to persistently low survival rates among affected individuals. Nanomaterials have garnered significant attention in cancer research for their potential diagnostic applications. Among these, MXenes – a novel family of two-dimensional nanomaterials composed of transition metal carbides, nitrides, and carbonitrides – are of particular interest due to their unique properties. These include high electrical conductivity, hydrophilicity, thermal stability, large interlayer spacing, tunable structure, and high surface area. These characteristics make MXenes highly effective for detecting trace amounts of various analytes. In addition, their tunable structure enables precise manipulation of their properties, allowing for optimized sensing responses. Montmorillonite nanoclay (MMT), a member of the smectite group of natural clay minerals, is known for its ability to promote bone development and influence cell behavior. When combined with MXenes, MMT forms promising nanocomposites for early pancreatic cancer detection through sensing applications. The Ti3C2 MXene-MMT nanocomposites exhibit potential as scaffold sensors capable of distinguishing cancerous from non-cancerous samples by observing the distinctive patterns in resistance changes. In addition, MXenes possess excellent selectivity, allowing for the reliable identification of targeted analytes from a complex mixture of chemical and biological analytes. Due to the advanced sensing capabilities of MXene-MMT composite scaffold sensors, they hold great promise for early cancer diagnosis and tissue regeneration, providing a novel therapeutic approach to improving patient outcomes.

Keywords
Sensor
Scaffold
MXene
Nanocomposite
Nanoclay
Nanomaterial
Funding
This work was supported by the National Science Foundation (Eager-2226202, RII Track 2 – 2218046, and RII-Track-1: ND-ACES 1946202), ND Economic Diversification Research Funds (ND-EDRF), and ND EPSCoR. The results, discussion, and opinions reflected in this paper are those of the authors only and do not necessarily represent those of the sponsors.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. Lancet. 2020;395(10242):2008-2020. doi: 10.1016/S0140-6736(20)30974-0

 

  1. Liu D, Zhang G, Ji Q, Zhang Y, Li J. Synergistic electrocatalytic nitrogen reduction enabled by confinement of nanosized au particles onto a two-dimensional Ti3C2 substrate. ACS Appl Mater Interfaces. 2019;11(29):25758-25765. doi: 10.1021/ACSAMI.9B02511

 

  1. Hantanasirisakul K, Alhabeb M, Lipatov A, et al. Effects of synthesis and processing on optoelectronic properties of titanium carbonitride MXene. Chem Mater. 2019;31(8):2941-2951. doi: 10.1021/ACS.CHEMMATER.9B00401

 

  1. Khazaei M, Ranjbar A, Ghorbani-Asl M, et al. Nearly free electron states in MXenes. Phys Rev B. 2016;93(20):205125. doi: 10.1103/PhysRevB.93.205125

 

  1. Hart JL, Hantanasirisakul K, Lang AC, et al. Control of MXenes’ electronic properties through termination and intercalation. Nat Commun. 2019;10:522. doi: 10.1038/s41467-018-08169-8

 

  1. Muckley ES, Naguib M, Wang HW, et al. Multimodality of structural, electrical, and gravimetric responses of intercalated MXenes to water. ACS Nano. 2017;11(11):11118-11126. doi: 10.1021/ACSNANO.7B05264

 

  1. Halim J, Lukatskaya MR, Cook KM, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem Mater. 2014;26(7):2374-2381. doi: 10.1021/CM500641A

 

  1. Bergmann G. Quantitative analysis of weak localization in thin Mg films by magnetoresistance measurements. Phys Rev B. 1982;25(4):2937-2939. doi: 10.1103/PHYSREVB.25.2937

 

  1. Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. 2022;2:16098. doi: 10.1038/natrevmats.2016.98

 

  1. Lipatov A, Alhabeb MH, Lukatskaya MR, Boson AJ, Gogotsi Y, Sinitskii A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv Electron Mater. 2016;2(12):1600255. doi: 10.1002/aelm.201600255

 

  1. Bilibana MP. Electrochemical properties of MXenes and applications. Adv Sens Energy Mater. 2023;2(4):100080. doi: 10.1016/J.ASEMS.2023.100080

 

  1. Tang M, Li J, Wang Y, et al. Surface terminations of MXene: Synthesis, characterization, and properties. Symmetry. 2022;14(11):2232. doi: 10.3390/SYM14112232

 

  1. Fu Z, Wang N, Legut D, et al. Rational design of flexible two-dimensional MXenes with multiple functionalities. Chem Rev. 2019;119(23):11980-12031. doi: 10.1021/ACS.CHEMREV.9B00348

 

  1. Gogotsi Y, Anasori B. The rise of MXenes. ACS Nano. 2019;13(8):8491-8494. doi: 10.1021/ACSNANO.9B06394

 

  1. Sinha A, Dhanjai, Zhao H, et al. MXene: An emerging material for sensing and biosensing. TrAC Trends Anal Chem. 2018;105:424-435. doi: 10.1016/j.trac.2018.05.021

 

  1. Huang K, Li Z, Lin J, Han G, Huang P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem Soc Rev. 2018;47:5109-5124. doi: 10.1039/c7cs00838d

 

  1. Liu S, Pan X, Liu H. Two-dimensional nanomaterials for photothermal therapy. Angew Chem Int Ed Engl. 2020;132(15):5943-5953. doi: 10.1002/anie.201911477

 

  1. Scheibe B, Wychowaniec JK, Scheibe M, et al. Cytotoxicity assessment of Ti-Al-C based MAX phases and Ti3C2Tx MXenes on human fibroblasts and cervical cancer cells. ACS Biomater Sci Eng. 2019;5(12):6557-6569. doi: 10.1021/ACSBIOMATERIALS.9B01476

 

  1. Lin H, Gao S, Dai C, Chen Y, Shi J. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J Am Chem Soc. 2017;139(45):16235-16247. doi: 10.1021/JACS.7B07818

 

  1. Wu M, Chen F, Wu P, et al. Nanoclay mineral-reinforced macroporous nanocomposite scaffolds for in situ bone regeneration: In vitro and in vivo studies. Mater Des. 2021;205:109734. doi: 10.1016/J.MATDES.2021.109734

 

  1. Massaro M, Cavallaro G, Lazzara G, Riela S. Covalently modified nanoclays: Synthesis, properties and applications. In: Clay Nanoparticles: Properties and Applications. Netherlands: Elsevier; 2020. p. 305-333. doi: 10.1016/B978-0-12-816783-0.00013-X

 

  1. Jayrajsinh S, Shankar G, Agrawal YK, Bakre L. Montmorillonite nanoclay as a multifaceted drug-delivery carrier: A review. J Drug Deliv Sci Technol. 2017;39:200-209. doi: 10.1016/J.JDDST.2017.03.023

 

  1. Shukla V. The tunable electric and magnetic properties of 2D MXenes and their potential applications. Mater Adv. 2020;1(9):3104-3121. doi: 10.1039/D0MA00548G

 

  1. Ambre AH, Katti DR, Katti KS. Nanoclays mediate stem cell differentiation and mineralized ECM formation on biopolymer scaffolds. J Biomed Mater Res A. 2013;101A(9):2644-2660. doi: 10.1002/JBM.A.34561

 

  1. Lee E, Vahidmohammadi A, Yoon YS, Beidaghi M, Kim DJ. Two-dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward nonpolar gases. ACS Sens. 2022;74(6):1603-1611. doi: 10.1021/acssensors.9b00303

 

  1. Hermawan A, Zhang B, Taufik A, et al. CuO nanoparticles/ Ti3C2Tx MXene hybrid nanocomposites for detection of toluene gas. ACS Appl Nano Mater. 2020;3(5):4755-4766. doi: 10.1021/ACSANM.0C00749

 

  1. Mehdi Aghaei S, Aasi A, Panchapakesan B. Experimental and theoretical advances in MXene-based gas sensors. ACS Omega. 2021;6(4):2450-2461. doi: 10.1021/ACSOMEGA.0C05766

 

  1. John RAB, Vijayan K, Septiani NLW, et al. Gas-sensing mechanisms and performances of MXenes and MXene-based heterostructures. Sensors (Basel). 2023;23(21):8674. doi: 10.3390/S23218674

 

  1. Liu X, Ma T, Pinna N, Zhang J. Two-dimensional nanostructured materials for gas sensing. Adv Funct Mater. 2017;27(37):1702168. doi: 10.1002/ADFM.201702168

 

  1. Li J, Wang H, Xiao X. Intercalation in two-dimensional transition metal carbides and nitrides (MXenes) toward electrochemical capacitor and beyond. Energy Environ Mater. 2020;3(3):306-322. doi: 10.1002/EEM2.12090

 

  1. Lu M, Han W, Li H, Zhang W, Zhang B. There is plenty of space in the MXene layers: The confinement and fillings. J Energy Chem. 2020;48:344-363. doi: 10.1016/J.JECHEM.2020.02.032

 

  1. Chakraborty D, Ethiraj KR, Mukherjee A. Understanding the relevance of protein corona in nanoparticle-based therapeutics and diagnostics. RSC Adv. 2020; 10(45):27161-27172. doi: 10.1039/D0RA05241H

 

  1. Wu X, Tan F, Cheng S, Chang Y, Wang X, Chen L. Investigation of interaction between MXene nanosheets and human plasma and protein corona composition. Nanoscale. 2022;14(10):3777-3787. doi: 10.1039/D1NR08548D

 

  1. Abduljauwad SN, Ahmed HUR. Enhancing cancer cell adhesion with clay nanoparticles for countering metastasis. Sci Rep. 2019;9(1):5935. doi: 10.1038/S41598-019-42498-Y
Share
Back to top
Cancer Plus, Electronic ISSN: 2661-3840 Print ISSN: 2661-3832, Published by AccScience Publishing