Emerging trends and research landscape of the tumor microenvironment in head-and-neck cancer: A comprehensive bibliometric analysis

Head-and-neck squamous cell carcinoma (HNSCC) is a complex malignancy characterized by a highly heterogeneous tumor microenvironment (TME) that influences tumor progression, metastasis, and therapeutic resistance. Despite significant advancements in understanding HNSCC at the molecular level, comprehensive analyses of TME-related research within this domain remain limited. Hence, this study presents a bibliometric analysis of TME research in HNSCC, synthesizing data on publication trends, citation patterns, collaborative networks, and emerging research themes. The findings reveal an exponential growth in TME-related publications, reflecting a rising focus on immunotherapy, stromal biology, and molecular biomarkers. Medicine and molecular biology dominate the research output, with interdisciplinary collaborations contributing to innovative therapeutic strategies. Key themes include immune resistance, extracellular matrix modulation, and the role of stromal components, like cancer-associated fibroblasts, in shaping therapeutic outcomes. Emerging topics, such as novel cell death pathways (e.g., cuproptosis and pyroptosis) and artificial intelligence-driven prognostics, highlight future directions. Citation networks emphasize the centrality of immunotherapy and precision medicine, with leading institutions and journals playing pivotal roles in advancing the field. This analysis underscores the importance of interdisciplinary research and highlights critical gaps, offering a roadmap for future investigations to improve clinical outcomes through targeted TME manipulation in HNSCC.
- Badola A, Mehta P, Mehra S, Sood S. Epidemiology and survival analysis of head and neck cancer: Results from comprehensive care center in North India. Oral Oncol Rep. 2023;6:100022. doi: 10.1016/j.oor.2023.100022
- Das U, Chandramouli L, Uttarkar A, Kumar J, Niranjan V. Discovery of natural compounds as novel FMS-like tyrosine kinase-3 (FLT3) therapeutic inhibitors for the treatment of acute myeloid leukemia: An in-silico approach. Aspects Mol Med. 2025;5:100058. doi: 10.1016/j.amolm.2024.100058
- Das U, Chanda T, Kumar J, Peter A. Discovery of natural MCL1 inhibitors using pharmacophore modelling, QSAR, Docking, ADMET, molecular dynamics, and DFT analysis. bioRxiv. 2024. doi: 10.1101/2024.10.14.618373
- Sathish N, Wang X, Yuan Y. Human papillomavirus (HPV)- associated oral cancers and treatment strategies. J Dent Res. 2014;93(7 Suppl):29S-36S. doi: 10.1177/0022034514527969
- Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Primer. 2020;6(1):92. doi: 10.1038/s41572-020-00224-3
- Cognetti DM, Weber RS, Lai SY. Head and neck cancer: An evolving treatment paradigm. Cancer. 2008; 113(S7):1911-1932. doi: 10.1002/cncr.23654
- Das U, Banerjee S, Sarkar M, et al. Circular RNA vaccines: Pioneering the next-gen cancer immunotherapy. Cancer Pathog Ther. 2024;S2949713224000892. doi: 10.1016/j.cpt.2024.11.003
- Li Q, Tie Y, Alu A, Ma X, Shi H. Targeted therapy for head and neck cancer: Signaling pathways and clinical studies. Signal Transduct Target Ther. 2023;8(1):31. doi: 10.1038/s41392-022-01297-0
- Qin Y, Zheng X, Gao W, Wang B, Wu Y. Tumor microenvironment and immune-related therapies of head and neck squamous cell carcinoma. Mol Ther Oncolytics. 2021;20:342-351. doi: 10.1016/j.omto.2021.01.011
- De Visser KE, Joyce JA. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell. 2023;41(3):374-403. doi: 10.1016/j.ccell.2023.02.016
- Wright K, Ly T, Kriet M, Czirok A, Thomas SM. Cancer-associated fibroblasts: Master tumor microenvironment modifiers. Cancers. 2023;15(6):1899. doi: 10.3390/cancers15061899
- Oshimori N, Guo Y, Taniguchi S. An emerging role for cellular crosstalk in the cancer stem cell niche. J Pathol. 2021;254(4):384-394. doi: 10.1002/path.5655
- Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162-174. doi: 10.1038/nri2506
- Liu S, Wang R, Fang J. Exploring the frontiers: Tumor immune microenvironment and immunotherapy in head and neck squamous cell carcinoma. Discov Oncol. 2024;15(1):22. doi: 10.1007/s12672-024-00870-z
- Mandal R, Şenbabaoğlu Y, Desrichard A, et al. The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight. 2016;1(17):e89829. doi: 10.1172/jci.insight.89829
- Vinay DS, Ryan EP, Pawelec G, et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015;35:S185-S198. doi: 10.1016/j.semcancer.2015.03.004
- Wang G, Zhang M, Cheng M, et al. Tumor microenvironment in head and neck squamous cell carcinoma: Functions and regulatory mechanisms. Cancer Lett. 2021;507:55-69. doi: 10.1016/j.canlet.2021.03.009
- Joshi RS, Kanugula SS, Sudhir S, Pereira MP, Jain S, Aghi MK. The role of cancer-associated fibroblasts in tumor progression. Cancers (Basel). 2021;13(6):1399. doi: 10.3390/cancers13061399
- Tufail M, Jiang CH, Li N. Altered metabolism in cancer: Insights into energy pathways and therapeutic targets. Mol Cancer. 2024;23(1):203. doi: 10.1186/s12943-024-02119-3
- Öztürk O, Kocaman R, Kanbach DK. How to design bibliometric research: An overview and a framework proposal. Rev Manag Sci. 2024;18(11):3333-3361. doi: 10.1007/s11846-024-00738-0
- Arokiasamy ARA, Tan RSE, Deng P, et al. A bibliometric deep-dive: Uncovering key trends, emerging innovations, and future pathways in sustainable employability research from 2014 to 2024. Discov Sustain. 2024;5(1):450. doi: 10.1007/s43621-024-00664-x
- Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 2021;221:107753. doi: 10.1016/j.pharmthera.2020.107753
- Babar Q, Saeed A, Tabish TA, Sarwar M, Thorat ND. Targeting the tumor microenvironment: Potential strategy for cancer therapeutics. Biochim Biophys Acta Mol Basis Dis. 2023;1869(6):166746. doi: 10.1016/j.bbadis.2023.166746
- Passaro A, Al Bakir M, Hamilton EG, et al. Cancer biomarkers: Emerging trends and clinical implications for personalized treatment. Cell. 2024;187(7):1617-1635. doi: 10.1016/j.cell.2024.02.041
- Cai XJ, Zhang HY, Zhang JY, Li TJ. Bibliometric analysis of immunotherapy for head and neck squamous cell carcinoma. J Dent Sci. 2023;18(2):872-882. doi: 10.1016/j.jds.2023.02.007
- Das U, Banerjee S, Sarkar M. Bibliometric analysis of circular RNA cancer vaccines and their emerging impact. Vacunas. 2025;500391. doi: 10.1016/j.vacun.2025.500391
- Van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(2):523-538. doi: 10.1007/s11192-009-0146-3
- Denton AE, Roberts EW, Fearon DT. Stromal cells in the tumor microenvironment. Adv Exp Med Biol. 2018;1060:99-114. doi: 10.1007/978-3-319-78127-3_6
- Lei X, Lei Y, Li JK, et al. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett. 2020;470:126-133. doi: 10.1016/j.canlet.2019.11.009
- Henke E, Nandigama R, Ergün S. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci. 2019;6:160. doi: 10.3389/fmolb.2019.00160
- Yang J, Xu J, Wang W, Zhang B, Yu X, Shi S. Epigenetic regulation in the tumor microenvironment: Molecular mechanisms and therapeutic targets. Signal Transduct Target Ther. 2023;8(1):210. doi: 10.1038/s41392-023-01480-x
- Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell. 2011;144(5):646-674. doi: 10.1016/j.cell.2011.02.013
- Chen DS, Mellman I. Oncology meets immunology: The cancer-immunity cycle. Immunity. 2013;39(1):1-10. doi: 10.1016/j.immuni.2013.07.012
- Ferris RL, Blumenschein G Jr., Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):1856-1867. doi: 10.1056/NEJMoa1602252
- Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252-264. doi: 10.1038/nrc3239
- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi: 10.3322/caac.21492
- Leemans CR, Snijders PJF, Brakenhoff RH. The molecular landscape of head and neck cancer. Nat Rev Cancer. 2018;18(5):269-282. doi: 10.1038/nrc.2018.11
- Agrawal N, Akbani R, Aksoy BA, et al. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676-690. doi: 10.1016/j.cell.2014.09.050
- Argiris A, Karamouzis MV, Raben D, Ferris RL. Head and neck cancer. Lancet. 2008;371(9625):1695-1709. doi: 10.1016/S0140-6736(08)60728-X
- Xie T, Huang A, Yan H, Ju X, Xiang L, Yuan J. Artificial intelligence: Illuminating the depths of the tumor microenvironment. J Transl Med. 2024;22(1):799. doi: 10.1186/s12967-024-05609-6
- Albarrán V, San Román M, Pozas J, et al. Adoptive T cell therapy for solid tumors: Current landscape and future challenges. Front Immunol. 2024;15:1352805. doi: 10.3389/fimmu.2024.1352805
- Patkar S, Chen A, Basnet A, et al. Predicting the tumor microenvironment composition and immunotherapy response in non-small cell lung cancer from digital histopathology images. NPJ Precis Oncol. 2024;8(1):280. doi: 10.1038/s41698-024-00765-w
- Chen Z, Miao Y, Tan Z, et al. scCancer2: Data-driven in-depth annotations of the tumor microenvironment at single-level resolution. Bioinformatics. 2024;40(2):btae028. doi: 10.1093/bioinformatics/btae028
- Cole JA, Peterson JR, Earnest TM, et al. SimBioSys TumorScope: Spatio-temporal modeling of the tumor microenvironment to predict chemotherapeutic response. J Clin Oncol. 2020;38(15_suppl):e12650. doi: 10.1200/JCO.2020.38.15_suppl.e12650