Cite this article
54
Download
726
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ORIGINAL RESEARCH ARTICLE

Therapeutic prospective for anti-cervical cancer activity of Silybum marianum leaf aqueous extract-based vanadium nanoparticles

Mohammad Mahdi Zangeneh1 Akram Zangeneh1*
Show Less
1 Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
CP 2023, 5(3), 2574
Submitted: 29 April 2023 | Accepted: 2 July 2023 | Published: 21 July 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Silybum marianum is a plant with many remedial properties and may help prevent the cancer spread. Studies in this field show that this plant can reduce the growth of cancer cells. Probably, Silybum marianum will improve the effectiveness of chemotherapy. Also, the side effects of the recent treatments may be reduced by using this plant. The FDA has not confirmed Silybum marianum for the cancer treatment, but it may be effective in the treatment of these cancers: prostate, breast, cervical, blood, small intestine, and skin. Researching formulation of metallic nanoparticles by medicinal plants is the research priority of all countries. In the current experiment, we synthesize the vanadium nanoparticles by the watery extract of the Silybum marianum aerial parts. The characterization was conducted by FE-SEM, TEM, XRD, FT-IR, EDS, and UV-Vis. The DPPH inhibition efficacy was assessed by the DPPH examination, while the MTT assay was used to evaluate anti-cervical cancer (against LM-MEL-41, HT-3, Ca Ski, DoTc2 4510, SiHa, and C-33 A cells) and cytotoxicity efficacy of vanadium NPs. In XRD, the signals at 2 theta values of 25.13, 27.77, 44.94, 49.52, 66.28, and 70.57 belong to the planes of (202), (103), (401), (205), (406), and (125) respectively. Based on the findings of FE-SEM, the NPs are formed with the morphology of spherical with an aggregation. In FT-IR, the peaks at 416 and 551 cm-1 can be assigned to V-O-V and V-O bonds. The EDS analysis confirms the vanadium presence by the signals at 5.45 (VKβ), 4.98 (VKα), and 0.53 (VLα). The other signals below 0.5 KeV verify the appearance of carbon and oxygen in the green synthetic vanadium nanoparticles. The V nanoparticles IC50 was 126, 157, 165, 125, 132, and 197 µg/mL against LM-MEL-41, HT-3, DoTc2 4510, C-33 A, SiHa, and Ca Ski cervical cancer cells, respectively.

Keywords
Vanadium nanoparticles
Antioxidant
Anti-cervical cancer
Silybum marianum
Funding
Nil.
Conflict of interest
There is no competing interest.
References
  1. Invernizzi R, Bernuzzi S, Ciani D. Silymarine during maintenance therapy of acute promyelocytic leukemia. Haematologica. 1993; 78 (5): 340-1.

 

  1. Grossmann M, Hoermann R, Weiss M. Spontaneous regression of hepatocellular carcinoma. Am. J. Gastroenterol. 1995; 90 (9): 1500-3.

 

  1. Zi X, Agarwal R: Silibinin decreases prostatespecific antigen with cell growth inhibition via G1 arrest, leading to differentiation of prostate carcinoma cells: implications for prostate cancer intervention. Proc. Natl. Acad. Sci. USA 1999; 96 (13): 7490-5.

 

  1. Singh RP, Dhanalakshmi S, Tyagi AK. Dietary feeding of silibinin inhibits advance human prostate carcinoma growth in athymic nude mice and increases plasma insulin-like growth factorbinding protein-3 levels. Cancer. Res. 2002; 62 (11): 3063-9.

 

  1. Zi X, Feyes DK, Agarwal R: Anticarcinogenic effect of a flavonoid antioxidant, silymarin, in human breast cancer cells MDA-MB 468: induction of G1 arrest through an increase in Cip1/p21 concomitant with a decrease in kinase activity of cyclin-dependent kinases and associated cyclins. Clin. Cancer. Res. 1998; 4 (4): 1055-64.

 

  1. Saliou C, Rihn B, Cillard J. Selective inhibition of NF-kappaB activation by the flavonoid hepatoprotector silymarin in HepG2. Evidence for different activating pathways. FEBS Lett. 1998; 440 (1-2): 8-12.

 

  1. Shear NH, Malkiewicz IM, Klein D. Acetaminophen-induced toxicity to human epidermoid cell line A431 and hepatoblastoma cell line Hep G2, in vitro, is diminished by silymarin. Skin Pharmacol. 1995; 8 (6): 279-91.

 

  1. Duthie SJ, Johnson W, Dobson VL: The effect of dietary flavonoids on DNA damage (strand breaks and oxidised pyrimdines) and growth in human cells. Mutat. Res. 390 (1-2): 141-51.

 

  1. Scambia G, De Vincenzo R, Ranelletti FO. Antiproliferative effect of silybin on gynaecological malignancies: synergism with cisplatin and doxorubicin. Eur. J. Cancer. 1996; 32A (5): 877-82.

 

  1. Manna SK, Mukhopadhyay A, Van NT. Silymarin suppresses TNF-induced activation of NF-kappa B, c-Jun N-terminal kinase, and apoptosis. J. Immunol. 1999; 163 (12): 6800-9.

 

  1. Kang SN, Lee MH, Kim KM. Induction of human promyelocytic leukemia HL-60 cell differentiation into monocytes by silibinin: involvement of protein kinase C. Biochem. Pharmacol. 2001; 61 (12): 1487-95.

 

  1. Yanaida Y, Kohno H, Yoshida K. Dietary silymarin suppresses 4-nitroquinoline 1-oxideinduced tongue carcinogenesis in male F344 rats. Carcinogenesis 2002; 23 (5): 787-94.

 

  1. Katiyar SK, Korman NJ, Mukhtar H. Protective effects of silymarin against photocarcinogenesis in a mouse skin model. J. Natl. Cancer Inst. 1997; 89 (8): 556-66.

 

  1. Vinh PQ, Sugie S, Tanaka T. Chemopreventive effects of a flavonoid antioxidant silymarin on N-butyl-N-(4-hydroxybutyl) nitrosamine-induced urinary bladder carcinogenesis in male ICR mice. Jpn. J. Cancer Res. 2002; 93 (1): 42-9.

 

  1. Kohno H, Tanaka T, Kawabata K. Silymarin, a naturally occurring polyphenolic antioxidant flavonoid, inhibits azoxymethane-induced colon carcinogenesis in male F344 rats. Int. J. Cancer. 2002; 101 (5): 461-8.

 

  1. Gershbein LL. Action of dietary trypsin, pressed coffee oil, silymarin and iron salt on 1,2-dimethylhydrazine tumorigenesis by gavage. Anticancer Res. 1994; 14 (3A): 1113-6.

 

  1. Sonnenbichler J, Scalera F, Sonnenbichler I. Stimulatory effects of silibinin and silicristin from the milk thistle Silybum marianum on kidney cells. J. Pharmacol. Exp. Ther. 1999; 290 (3): 1375-83.

 

  1. Gaedeke J, Fels LM, Bokemeyer C. Cisplatin nephrotoxicity and protection by silibinin. Nephrol. Dial. Transplant. 1996; 11 (1): 55-62.

 

  1. Dhanalakshmi S, Singh RP, Agarwal C. Silibinin inhibits constitutive and TNFalpha induced activation of NF-kappaB and sensitizes human prostate carcinoma DU145 cells to TNFalpha-induced apoptosis. Oncogene. 2002; 21 (11): 1759-67.

 

  1. Ahmad N, Gali H, Javed S. Skin cancer chemopreventive effects of a flavonoid antioxidant silymarin are mediated via impairment of receptor tyrosine kinase signaling and perturbation in cell cycle progression. Biochem. Biophys. Res. Commun. 1998; 247 (2): 294-301.

 

  1. Quade G. Complementary and alternative medicine statement for Health professionals: Milk Thistle. http://www.meb.uni-bonn.de/cancer.gov/CDR0000347008.html.

 

  1. Cafaro A, Caputo A, Fracasso C, et al. Control of SHIV-89.6P-infection of cynomolgus monkeys by HIV-1 Tat protein vaccine. Nat Med. 1999;5:643–50.

 

  1. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54:631–51.

 

  1. Berton M, Turelli P, Trono D, et al. Inhibition of HIV-1 in cell culture by oligonucleotide-loaded nanoparticles. Pharm Res. 2001;18:1096–101.

 

  1. Calvo P, Gouritin B, Villarroya H, et al. Quantification and localization of PEGylated polycyanoacrylate nanoparticles in brain and spinal cord during experimental allergic encephalomyelitis in the rat. Eur J Neurosci. 2002;15:1317–26.

 

  1. Calvo P, Gouritin B, Chacun H, et al. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm Res. 2001;18:1157–66.

 

  1. Allen TM, Cullis PR. Drug delivery systems: Entering the mainstream. Science. 2004;303:1818–22.

 

  1. Alonso MJ. Nanomedicines for overcoming biological barriers. Biomed Pharmacother. 2004;58:168–72.

 

  1. Ballou B, Lagerholm BC, Ernst LA, et al. Noninvasive imaging of quantum dots in mice. Bioconjugate Chem. 2004;15:79–86.

 

  1. Becker ML, Bailey LO, Wooley KL. Peptide-derivatized shell-cross-linked nanoparticles. 2. Biocompatibility evaluation. Bioconjugate Chem. 2004;15:710–17.

 

  1. Velayati, Mahin, Hassan Hassani, Zahra Sabouri, Asma Mostafapour, and Majid Darroudi. "Green-based biosynthesis of Se nanorods in chitosan and assessment of their photocatalytic and cytotoxicity effects." Environmental Technology & Innovation27 (2022): 102610.

 

  1. Adibian, Fatemeh, Roya Saddat Ghaderi, Zahra Sabouri, Javid Davoodi, Monireh Kazemi, Kiarash Ghazvini, Masoud Youssefi, Saman Soleimanpour, and Majid Darroudi. "Green synthesis of selenium nanoparticles using Rosmarinus officinalis and investigated their antimicrobial activity." BioMetals(2022): 1-12.

 

  1. Hosseini Bafghi, Mahdi, Hadi Safdari, Razieh Nazari, Majid Darroudi, Zahra Sabouri, Mohsen Zargar, and Hossein Zarrinfar. "Evaluation and comparison of the effects of biosynthesized selenium and silver nanoparticles using plant extracts with antifungal drugs on the growth of Aspergillus and Candida species." Rendiconti Lincei. Scienze Fisiche e Naturali32 (2021): 791-803.

 

  1. Ghaderi, Roya Saddat, Fatemeh Adibian, Zahra Sabouri, Javid Davoodi, Monireh Kazemi, Saeid Amel Jamehdar, Zahra Meshkat, Saman Soleimanpour, and Majid Daroudi. "Green synthesis of selenium nanoparticle by Abelmoschus esculentus extract and assessment of its antibacterial activity." Materials Technology37, no. 10 (2022): 1289-1297.

 

  1. Berton M, Allemann E, Stein CA, et al. Highly loaded nanoparticulate carrier using an hydrophobic antisense oligonucleotide complex. Eur J Pharm Sci. 1999;9:163–70.

 

  1. (a) N. Abbasi, H. Ghaneialvar, R. Moradi, M. M. Zangeneh, A. Zangeneh. Arab J Chem, 14 (2021), pp. 103246. (b) M. Abdoli, K. Sadrjavadi, E. Arkan, M. M. Zangeneh, , S. Moradi, A. Zangeneh, M. shahlaei, S. Khaledian. J Drug Deliv Sci Technol. 60 (2020), pp. 102044. (c) M. Gholami, N. Abbasi, H. Ghaneialvar, E. Karimi, A. Afzalinia, M. M. Zangeneh, M. Yadollahi. Nanotechnology, 33 (2022), pp. 495603. (d) A.R. Jalalvand, M.M. Zangeneh, F. Jalili, S. Soleimani, J.M. Díaz-Cruz. Chemistry and Physics of Lipids. 229 (2020), 104895.

 

  1. (a) D. Ma, D. Gong, T. Han, M. Javadi, H. Mohebi, M. Karimian, N. Abbasi, H. Ghaneialvar, M. M. Zangeneh, A. Zangeneh, M. Shahriari, F. Zhang, J. Sun, Y. Liu. Int. J. Biol. Macromol. 165 (2020), pp. 767-775. (b) Z. Shi, Y. Mahdavian, Y. Mahdavian, S. Mahdigholizad, P. Irani, M. Karimian, N. Abbasi, H. Ghaneialvar, A. Zangeneh, M. M. Zangeneh, Arab J Chem, 14 (2022), pp. 103224. (c) T. Sun, J. Gao, H. Shi, D. Han, M.M. Zangeneh, N. Liu, H. Liu, Y. Guo, X. Liu. Int. J. Biol. Macromol. 165 (2020), pp. 787-795. (d) H. Zarafshani, M. Mojarab, M. M. Zangeneh, P. Moradipour, F. Bagheri, F. Aghaz, E. Arkan. IEEE Transactions on NanoBioscience, 21 (2022), pp. 520-528.

 

  1. Karthik, K., Nikolova, M. P., Phuruangrat, A., Pushpa, S., Revathi, V., & Subbulakshmi, M. (2020). Ultrasound-assisted synthesis of V2O5 nanoparticles for photocatalytic and antibacterial studies. Materials Research Innovations24(4), 229-234.‏

 

  1. (a) Seydi, N., Mahdavi, B., Paydarfard, S., Zangeneh, A., Zangeneh, M.M., Najafi, F., Jalalvand, A.R., Pirabbasi, E., 2019. Preparation, characterization, and assessment of cytotoxicity, antioxidant, antibacterial, antifungal, and cutaneous wound healing properties of titanium nanoparticles using aqueous extract of Ziziphora clinopodioides Lam leaves. Applied Organometallic Chemistry 33, e5009. (b) Zangeneh, M. M., Zangeneh, A., Pirabbasi, E., Moradi, R., Almasi. M. (2019). Appl. Organometal. Chem.33, e5246. (c) Jalalvand, A. R., Zhaleh, M., Goorani, S., Zangeneh, M. M., Seydi, N., Zangeneh, A., Moradi, R. (2019). J. Photochem. Photobiol. B.: Biol. 192, 103–112.

 

  1. Baghayeri, M., Mahdavi, B., Hosseinpor‐Mohsen Abadi, Z., Farhadi, S., 2018. Green synthesis of silver nanoparticles using water extract of Salvia leriifolia: Antibacterial studies and applications as catalysts in the electrochemical detection of nitrite. Applied Organometallic Chemistry 32, e4057.

 

  1. Mahdavi, B., Paydarfard, S., Rezaei‐Seresht, E., Baghayeri, M., & Nodehi, M. (2021). Green synthesis of NiONPs using Trigonella subenervis extract and its applications as a highly efficient electrochemical sensor, catalyst, and antibacterial agent. Applied Organometallic Chemistry35(8), e6264.‏

 

  1. Aliyu, A., Garba, S., Bognet, O., 2017. Green synthesis, characterization and antimicrobial activity of vanadium nanoparticles using leaf extract of Moringa Oleifera. International Journal of Chemical Sciences 16, 231.

 

  1. de Oliveira Carvalho, H., Góes, L.D.M., Cunha, N.M.B., Ferreira, A.M., Fernandes, C.P., Favacho, H.A.S., Junior, J.O.C.S., Ortiz, B.L.S., Navarrete, A., Carvalho, J.C.T., 2018. Development and standardization of capsules and tablets containing Calendula officinalis L. hydroethanolic extract. Revista Latinoamericana de Química 46, 16-27.

 

  1. Deepika, P., Vinusha, H., Muneera, B., Rekha, N., Prasad, K.S., 2020. Vanadium oxide nanorods as DNA cleaving and anti-angiogenic agent: Novel green synthetic approach using leaf extract of Tinospora cordifolia. Current Research in Green and Sustainable Chemistry.

 

  1. Talavera, N., Navarro, M., Sifontes, A., Díaz, Y., Villalobos, H., Niño-Vega, G., Boada-Sucre, A., González, I., 2013. Green synthesis of nanosized vanadium pentoxide using Saccharomyces cerevisiae as biotemplate. Recent Research Developments in Materials Science 10, 89.

 

  1. Zhang, Y., Zhang, X., Zhang, L., Alarfaj, A. A., Hirad, A. H., & Alsabri, A. E. (2021). Green formulation, chemical characterization, and antioxidant, cytotoxicity, and anti-human cervical cancer effects of vanadium nanoparticles: A pre-clinical study. Arabian Journal of Chemistry14(6), 103147.‏

 

  1. Navyashree G, Hareesh K, Nagabhushana H, Nagaraju G, Sunitha D. Vanadium pentoxide nanorod in latent finger print detection. Materials Research Express. 2019; 6(8):1-24.

 

  1. Connor EE, Mwamuka J, Gole A, et al. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005;1:325–7.

 

  1. Gao XH, Cui YY, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22:969–76.

 

  1. Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov. 2003;2:347–60.

 

  1. Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004;4:11–18.

 

  1. De Jaeghere F, Allemann E, Kubel F, et al. Oral bioavailability of a poorly water soluble HIV-1 protease inhibitor incorporated into pH-sensitive particles: effect of the particle size and nutritional state. J Control Release. 2000;68:291–8.

 

  1. De Giorgi U, Giannini M, Frassineti L, et al. Feasibility of radiotherapy after high-dose dense chemotherapy with epirubicin, preceded by dexrazoxane, and paclitaxel for patients with high-risk stage II-III breast cancer. Int J Radiat Oncol Biol Phys. 2006;65:1165–9.

 

  1. de Campos AM, Diebold Y, Carvalho ELS, et al. Chitosan nanoparticles as new ocular drug delivery systems: in vitro stability, in vivo fate, and cellular toxicity. Pharm Res. 2004;21:803–10.

 

  1. Cui ZR, Mumper RJ. Microparticles and nanoparticles as delivery systems for DNA vaccines. Crit Rev Ther Drug Carr Syst. 2003;20:103–37.
Share
Back to top
Cancer Plus, Electronic ISSN: 2661-3840 Print ISSN: 2661-3832, Published by AccScience Publishing