Oncogenic role of HERC2 in familial glioma development: A review

Familial gliomas are rare primary brain tumors, accounting for around 5% of all glioma cases, and carry a strong familial predisposition, although their genetic basis remains incompletely understood. A recent 2023 Stanford study discovered that genome-wide sequencing has identified deleterious variants in HECT and RCC1-like domain-containing protein 2 (HERC2), the most significantly enriched gene in familial glioma cohorts. HECT and RLD domain containing E3 ubiquitin protein ligase 2 (HERC2), a large (~528 kDa) multifunctional E3 ubiquitin ligase, modulates DNA damage responses by catalyzing ubiquitin signaling cascades, facilitating the recruitment of repair proteins (breast cancer 1, p53-binding protein 1) through the ring finger protein 8/ubiquitin conjugating enzyme E2 13 complex, regulating p53 tetramerization through neuralized E3 ubiquitin protein ligase 4/E6-associated protein complexes, and controlling intra-S-phase checkpoint activation through the ubiquitin-specific peptidase 20-Claspin-checkpoint kinase 1 axis. Structurally, HERC2 comprises RCC1‐like domains for chromatin engagement, a mind bomb/HERC2 domain for E2 interactions, a CPH domain implicated in p53 stabilization, a ZZ‐type zinc finger, a DOC scaffold region, and a catalytic C-terminal HECT domain. Familial glioma-associated HERC2 mutations include missense variants and truncating loss-of-function alleles that impair ubiquitin-mediated coordination of normal protein degradation, induce TP53 dysfunction, and promote genomic instability. These findings highlight HERC2’s potential as a diagnostic biomarker and therapeutic target. Future studies are needed to determine the penetrance of HERC2 variants and assess their prognostic and predictive value in clinical practice.
- Berger TR, Wen PY, Lang-Orsini M, et al. World Health Organization 2021 classification of central nervous system tumors and implications for therapy for adult-type gliomas: A review. JAMA Oncol. 2022;8(10):1493. doi: 10.1001/jamaoncol.2022.2844
- Ostrom QT, Price M, Neff C, et al. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2016-2020. Neuro Oncol. 2023;25(Suppl 4):iv1-iv99. doi: 10.1093/neuonc/noad149
- Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 2005;64(6):479-489. doi: 10.1093/jnen/64.6.479
- Mackay A, Burford A, Carvalho D, et al. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell. 2017;32(4):520-537.e5. doi: 10.1016/j.ccell.2017.08.017
- Wrensch M, Lee M, Miike R, et al. Familial and personal medical history of cancer and nervous system conditions among adults with glioma and controls. Am J Epidemiol. 1997;145(7):581-593. doi: 10.1093/oxfordjournals.aje.a009154
- Molinaro AM, Taylor JW, Wiencke JK, et al. Genetic and molecular epidemiology of adult diffuse glioma. Nat Rev Neurol. 2019;15(7):405-417. doi: 10.1038/s41582-019-0220-2
- Sadetzki S, Bruchim R, Oberman B, et al. Description of selected characteristics of familial glioma patients - Results from the Gliogene Consortium. Eur J Cancer. 2013;49(6):1335-1345. doi: 10.1016/j.ejca.2012.11.009
- Komori T. Grading of adult diffuse gliomas according to the 2021 WHO Classification of tumors of the central nervous system. Lab Investig. 2022;102(2):126-133. doi: 10.1038/s41374-021-00667-6
- Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro Oncol. 2021;23(8):1231-1251. doi: 10.1093/neuonc/noab106
- Shirahata M, Ono T, Stichel D, et al. Novel, improved grading system(s) for IDH-mutant astrocytic gliomas. Acta Neuropathol. 2018;136(1):153-166. doi: 10.1007/s00401-018-1849-4
- Mortazavi A, Fayed I, Bachani M, et al. IDH-mutated gliomas promote epileptogenesis through d -2-hydroxyglutarate-dependent mTOR hyperactivation. Neuro Oncol. 2022;24(9):1423-1435. doi: 10.1093/neuonc/noac003
- Carstam L, Corell A, Smits A, et al. WHO grade loses its prognostic value in molecularly defined diffuse lower-grade gliomas. Front Oncol. 2022;11:803975. doi: 10.3389/fonc.2021.803975
- Nakase K, Matsuda R, Sasaki S, et al. Lynch syndrome-associated glioblastoma treated with concomitant chemoradiotherapy and immune checkpoint inhibitors: Case report and review of literature. Brain Tumor Res Treat. 2024;12(1):70. doi: 10.14791/btrt.2023.0042
- Webster Carrion A, Shah AC, Kotch C. Neurofibromatosis type 1-associated gliomas and other tumors: A new pathway forward? Pediatr Hematol Oncol J. 2023;8(2):129-135. doi: 10.1016/j.phoj.2023.05.002
- Sloan EA, Hilz S, Gupta R, et al. Gliomas arising in the setting of Li-Fraumeni syndrome stratify into two molecular subgroups with divergent clinicopathologic features. Acta Neuropathol. 2020;139(5):953-957. doi: 10.1007/s00401-020-02144-8
- Chan AK, Han SJ, Choy W, et al. Familial melanoma-astrocytoma syndrome: Synchronous diffuse astrocytoma and pleomorphic xanthoastrocytoma in a patient with germline CDKN2A/B deletion and a significant family history. Clin Neuropathol. 2017;36(5):213-221. doi: 10.5414/NP301022
- Wibom C, Späth F, Dahlin AM, et al. Investigation of established genetic risk variants for glioma in prediagnostic samples from a population-based nested case-control study. Cancer Epidemiol Biomarkers Prev. 2015;24(5):810-816. doi: 10.1158/1055-9965.EPI-14-1106
- Choi DJ, Armstrong G, Lozzi B, et al. The genomic landscape of familial glioma. Sci Adv. 2023;9(17):eade2675. doi: 10.1126/sciadv.ade2675
- Lemak A, Gutmanas A, Chitayat S, et al. A novel strategy for NMR resonance assignment and protein structure determination. J Biomol NMR. 2011;49(1):27-38. doi: 10.1007/s10858-010-9458-0
- Ohtsubo M, Okazaki H, Nishimoto T. The RCC1 protein, a regulator for the onset of chromosome condensation locates in the nucleus and binds to DNA. J Cell Biol. 1989;109(4):1389-1397. doi: 10.1083/jcb.109.4.1389
- Elahian F, Sepehrizadeh Z, Moghimi B, et al. Human cytochrome b5 reductase: Structure, function, and potential applications. Crit Rev Biotechnol. 2014;34(2):134-143. doi: 10.3109/07388551.2012.732031
- Bekker-Jensen S, Danielsen JR, Fugger K, et al. HERC2 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes. Nat Cell Biol. 2010;12(1):80-86. doi: 10.1038/ncb2008
- Cubillos-Rojas M, Schneider T, Hadjebi O, et al. The HERC2 ubiquitin ligase is essential for embryonic development and regulates motor coordination. Oncotarget. 2016;7(35):56083- 56106. doi: 10.18632/oncotarget.11270
- Mathieu NA, Levin RH, Spratt DE. Exploring the roles of HERC2 and the NEDD4L HECT E3 ubiquitin ligase subfamily in p53 signaling and the DNA damage response. Front Oncol. 2021;11:659049. doi: 10.3389/fonc.2021.659049
- Tencer AH, Liu J, Zhu J, et al. The ZZ domain of HERC2 is a receptor of arginylated substrates. Sci Rep. 2022;12(1):6063. doi: 10.1038/s41598-022-10119-w
- Dikic I, Schulman BA. An expanded lexicon for the ubiquitin code. Nat Rev Mol Cell Biol. 2023;24(4):273-287. doi: 10.1038/s41580-022-00543-1
- Abraham JR, Barnard J, Wang H, et al. Proteomic investigations of human HERC2 mutants: Insights into the pathobiology of a neurodevelopmental disorder. Biochem Biophys Res Commun. 2019;512(2):421-427. doi: 10.1016/j.bbrc.2019.02.149
- Valnegri P, Huang J, Yamada T, et al. RNF8/UBC13 ubiquitin signaling suppresses synapse formation in the mammalian brain. Nat Commun. 2017;8(1):1271. doi: 10.1038/s41467-017-01333-6
- Danielsen JR, Povlsen LK, Villumsen BH, et al. DNA damage-inducible SUMOylation of HERC2 promotes RNF8 binding via a novel SUMO-binding Zinc finger. J Cell Biol. 2012;197(2):179-187. doi: 10.1083/jcb.201106152
- Sánchez-Tena S, Cubillos-Rojas M, Schneider T, et al. Functional and pathological relevance of HERC family proteins: A decade later. Cell Mol Life Sci. 2016;73(10):1955-1968. doi: 10.1007/s00018-016-2139-8
- Shah SS, Kumar S. Adaptors as the regulators of HECT ubiquitin ligases. Cell Death Differ. 2021;28(2):455-472. doi: 10.1038/s41418-020-00707-6
- Smith ML, Chen IT, Zhan Q, et al. Interaction of the p53- regulated protein gadd45 with proliferating cell nuclear antigen. Science. 1994;266(5189):1376-1380. doi: 10.1126/science.7973727
- Hall JR, Lee HO, Bunker BD, et al. Cdt1 and Cdc6 are destabilized by rereplication-induced DNA damage. J Biol Chem. 2008;283(37):25356-25363. doi: 10.1074/jbc.M802667200
- Wu W, Koike A, Takeshita T, et al. The ubiquitin E3 ligase activity of BRCA1 and its biological functions. Cell Div. 2008;3(1):1. doi: 10.1186/1747-1028-3-1
- Zhu M, Wu W, Togashi Y, et al. HERC2 inactivation abrogates nucleolar localization of RecQ helicases BLM and WRN. Sci Rep. 2021;11(1):360. doi: 10.1038/s41598-020-79715-y
- Zhu M, Zhao H, Liao J, et al. HERC2/USP20 coordinates CHK1 activation by modulating CLASPIN stability. Nucleic Acids Res. 2014;42(21):13074-13081. doi: 10.1093/nar/gku978
- Zhang Z, Yang H, Wang H. The histone H2A deubiquitinase USP16 interacts with HERC2 and fine-tunes cellular response to DNA damage. J Biol Chem. 2014;289(47):32883-32894. doi: 10.1074/jbc.M114.599605
- Wu W, Rokutanda N, Takeuchi J, et al. HERC2 facilitates BLM and WRN helicase complex interaction with RPA to suppress G-quadruplex DNA. Cancer Res. 2018;78(22):6371-6385. doi: 10.1158/0008-5472.CAN-18-1877
- Lee TH, Park JM, Leem SH, et al. Coordinated regulation of XPA stability by ATR and HERC2 during nucleotide excision repair. Oncogene. 2014;33(1):19-25. doi: 10.1038/onc.2012.539
- Cubillos-Rojas M, Schneider T, Bartrons R, et al. NEURL4 regulates the transcriptional activity of tumor suppressor protein p53 by modulating its oligomerization. Oncotarget. 2017;8(37):61824-61836. doi: 10.18632/oncotarget.18699
- Clynes D, Jelinska C, Xella B, et al. Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX. Nat Commun. 2015;6(1):7538. doi: 10.1038/ncomms8538
- Sulkowski PL, Corso CD, Robinson ND, et al. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci Transl Med. 2017;9(375):eaal2463. doi: 10.1126/scitranslmed.aal2463
- Weller M, Wick W, Aldape K, et al. Glioma. Nat Rev Dis Primers. 2015;1(1):15017. doi: 10.1038/nrdp.2015.17
- Conger K. Genes Linked to Familial Brain Cancer Identified in Stanford Medicine-led Study. Stanford Medicine News Center. Available from: https://med.stanford.edu/news/all-news/2023/05/familial-brain-cancer.html [Last accessed on 2023 May 17].
- Kim T, Lee A, Ahn S, et al. Comprehensive molecular genetic analysis in glioma patients by next generation sequencing. Brain Tumor Res Treat. 2024;12(1):23-39. doi: 10.14791/btrt.2023.0036
- Pérez-Villegas EM, Ruiz R, Bachiller S, et al. The HERC proteins and the nervous system. Semin Cell Dev Biol. 2022;132:5-15. doi: 10.1016/j.semcdb.2021.11.017
- Sala-Gaston J, Martinez-Martinez A, Pedrazza L, et al. HERC ubiquitin ligases in cancer. Cancers. 2020;12(6):1653. doi: 10.3390/cancers12061653
- Elpidorou M, Best S, Poulter JA, et al. Novel loss-of-function mutation in HERC2 is associated with severe developmental delay and paediatric lethality. J Med Genet. 2021;58(5):334-341. doi: 10.1136/jmedgenet-2020-106873
- Minde DP, Anvarian Z, Rüdiger SG, et al. Messing up disorder: How do missense mutations in the tumor suppressor protein APC lead to cancer? Mol Cancer. 2011;10(1):101. doi: 10.1186/1476-4598-10-101
- Rivas MA, Pirinen M, Conrad DF, et al. Effect of predicted protein-truncating genetic variants on the human transcriptome. Science. 2015;348(6235):666-669. doi: 10.1126/science.1261877
- Frattini V, Trifonov V, Chan JM, et al. The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet. 2013;45(10):1141-1149. doi: 10.1038/ng.2734
- Cubillos-Rojas M, Amair-Pinedo F, Peiró-Jordán R, et al. The E3 ubiquitin protein ligase HERC2 modulates the activity of tumor protein p53 by regulating its oligomerization. J Biol Chem. 2014;289(21):14782-14795. doi: 10.1074/jbc.M113.527978
- Cao Y, Zhu H, Liu W, et al. Multi-omics analysis based on genomic instability for prognostic prediction in lower-grade glioma. Front Genet. 2022;12:758596. doi: 10.3389/fgene.2021.758596
- Lindeboom RGH, Supek F, Lehner B. The rules and impact of nonsense-mediated mRNA decay in human cancers. Nat Genet. 2016;48(10):1112-1118. doi: 10.1038/ng.3664
- Squalli Houssaini A, Lamrabet S, Senhaji N, et al. Prognostic value of ATRX and p53 status in high-grade glioma patients in Morocco. Cureus. 2024;16:e56361. doi: 10.7759/cureus.56361
- Noor H, Briggs NE, McDonald KL, et al. TP53 mutation is a prognostic factor in lower grade glioma and may influence chemotherapy efficacy. Cancers. 2021;13(21):5362. doi: 10.3390/cancers13215362
- Zhang Y, Dube C, Gibert M, et al. The p53 pathway in glioblastoma. Cancers. 2018;10(9):297. doi: 10.3390/cancers10090297
- Muller PAJ, Vousden KH. Mutant p53 in cancer: New functions and therapeutic opportunities. Cancer Cell. 2014;25(3):304-317. doi: 10.1016/j.ccr.2014.01.021
- Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756-760. doi: 10.1038/nature05236
- Gaiddon C, Lokshin M, Ahn J, et al. A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol. 2001;21(5):1874-1887. doi: 10.1128/MCB.21.5.1874-1887.2001
- Vogiatzi F, Brandt DT, Schneikert J, et al. Mutant p53 promotes tumor progression and metastasis by the endoplasmic reticulum UDPase ENTPD5. Proc Natl Acad Sci USA. 2016;113(52):E8433-E8442. doi: 10.1073/pnas.1612711114
- García‐Cano J, Sánchez‐Tena S, Sala‐Gaston J, et al. Regulation of the MDM2‐p53 pathway by the ubiquitin ligase HERC2. Mol Oncol. 2020;14(1):69-86. doi: 10.1002/1878-0261.12592
- Imyanitov EN, Kuligina ES, Sokolenko AP, et al. Hereditary cancer syndromes. World J Clin Oncol. 2023;14(2):40-68. doi: 10.5306/wjco.v14.i2.40
- Garber JE, Offit K. Hereditary cancer predisposition syndromes. J Clin Oncol. 2005;23(2):276-292. doi: 10.1200/JCO.2005.10.042
- Mensenkamp AR, Vogelaar IP, Van Zelst-Stams WAG, et al. Somatic mutations in MLH1 and MSH2 are a frequent cause of mismatch-repair deficiency in lynch syndrome-like tumors. Gastroenterology. 2014;146(3):643-646.e8. doi: 10.1053/j.gastro.2013.12.002
- Gorodetska I, Kozeretska I, Dubrovska A. BRCA genes: The role in genome stability, cancer stemness and therapy resistance. J Cancer. 2019;10(9):2109-2127. doi: 10.7150/jca.30410
- Jiang Q, Greenberg RA. Deciphering the BRCA1 tumor suppressor network. J Biol Chem. 2015;290(29):17724- 17732. doi: 10.1074/jbc.R115.667931
- Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012;481(7381):287-294. doi: 10.1038/nature10760
- Harlalka GV, Baple EL, Cross H, et al. Mutation of HERC2 causes developmental delay with Angelman-like features. J Med Genet. 2013;50(2):65-73. doi: 10.1136/jmedgenet-2012-101367
- Easton DF, Pharoah PDP, Antoniou AC, et al. Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med. 2015;372(23):2243-2257. doi: 10.1056/NEJMsr1501341
- Nurminen R, Afyounian E, Paunu N, et al. Previously reported CCDC26 risk variant and novel germline variants in GALNT13, AR, and MYO10 associated with familial glioma in Finland. Sci Rep. 2024;14(1):11562. doi: 10.1038/s41598-024-62296-5
- Rice T, Lachance DH, Molinaro AM, et al. Understanding inherited genetic risk of adult glioma - a review. Neuro Oncol Pract. 2016;3(1):10-16. doi: 10.1093/nop/npv026
- Vivancos Sánchez C, Esteban Rodríguez MI, Peláez García A, et al. Clinical impact of a next-generation sequencing approach for glioblastoma patients. Cancers. 2025;17(5):744. doi: 10.3390/cancers17050744
- Shin HW, Hong SW, Youn YC. Clinical aspects of the differential diagnosis of Parkinson’s disease and parkinsonism. J Clin Neurol. 2022;18(3):259. doi: 10.3988/jcn.2022.18.3.259
- Chang F, Li MM. Clinical application of amplicon-based next-generation sequencing in cancer. Cancer Genet. 2013;206(12):413-419. doi: 10.1016/j.cancergen.2013.10.003
- Landrum MJ, Lee JM, Benson M, et al. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):D1062-D1067. doi: 10.1093/nar/gkx1153
- Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424. doi: 10.1038/gim.2015.30
- Richard SA. Advances in synthetic lethality modalities for glioblastoma multiforme. Open Med. 2024;19(1):20240981. doi: 10.1515/med-2024-0981
- Scholz N, Kurian KM, Siebzehnrubl FA, et al. Targeting the ubiquitin system in glioblastoma. Front Oncol. 2020;10:574011. doi: 10.3389/fonc.2020.574011
- Souers AJ, Leverson JD, Boghaert ER, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19(2):202-208. doi:10.1038/nm.3048
- Lee HJ, Li CF, Ruan D, et al. The DNA damage transducer RNF8 facilitates cancer chemoresistance and progression through twist activation. Mol Cell. 2016;63(6):1021-1033. doi: 10.1016/j.molcel.2016.08.009
- Dixon K, Young S, Shen Y, et al. Establishing a framework for the clinical translation of germline findings in precision oncology. JNCI Cancer Spectr. 2020;4(5):pkaa045. doi: 10.1093/jncics/pkaa045