AccScience Publishing / AN / Online First / DOI: 10.36922/AN025100021
REVIEW ARTICLE

Nitrosative/oxidative stress, mitochondrial dysfunction, and redox balance in the mechanisms of neurodegenerative pathology and aging

Nina P. Kanunnikova1* Andrey G. Moiseenok2
Show Less
1 Department of Technology, Physiology and Hygiene of Nutrition, Faculty of Biology and Ecology, Yanka Kupala State University of Grodno, Grodno, Belarus
2 Vitaminology and Nutraceutical Department, Institute of Biochemistry of Biologically Active Substances, National Academy of Sciences of Belarus, Grodno, Belarus
Advanced Neurology, 025100021 https://doi.org/10.36922/AN025100021
Received: 7 March 2025 | Revised: 9 June 2025 | Accepted: 9 June 2025 | Published online: 24 June 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Unraveling the complex roles of oxidation products – including reactive oxygen species, reactive nitrogen species, reactive sulfur species (RSS), metalloproteins, and iron–sulfur (Fe–S) clusters – which are integrated through the reactive species interactome (RSI), remains a key challenge in neurochemistry and neuropharmacology. These reactive species strongly influence energy metabolism and redox homeostasis in the brain, particularly during neurodegeneration. This review highlights the impact of nitrosative/oxidative stress, focusing on early events in neurodegeneration: Reduced tricarboxylic acid (TCA) cycle activity, a shift toward succinate utilization, glutamate accumulation, and redox imbalance. The resulting peroxynitrite anion impairs the mitochondrial respiratory chain complex I and the antiradical defense system. A fall in glutathione (GSH) levels and redox potential promotes an imbalance in redox couples, iron-driven Fenton reactions, and impaired Fe–S cluster biogenesis, thereby uncoupling oxidative phosphorylation and initiating redox-driven neurodegeneration. The intramitochondrial localization of the electron transport chain, Fe–S cluster biogenesis, TCA cycle enzymes, and heme biosynthesis raises questions about their regulation by nutritional and aging factors, the dichotomy of iron utilization in Fe–S clusters and heme, the role of succinyl-coenzyme A (CoA) in heme biosynthesis and succinate-driven phosphorylation, and the relationship between CoA metabolism and intraneuronal iron delivery. Addressing these issues offers the potential to stabilize energy metabolism and modulate RSI generation, where providing mitochondria with a continuous supply of reduced components and maintaining a negative redox potential support the neuroprotective actions of selected metabolic therapy agents. These include CoA biosynthesis pre-cursors with antioxidant and anti-inflammatory properties and the ability to enhance GSH biosynthesis. Progress toward effective neuroprotection in both neuropathology and aging may require an integrated strategy to modulate RSI and RSSs effects, prevent metalloproteome imbalance, and preserve the energy-producing capacity of neural structures.

Keywords
Coenzyme A
Energy production
Glutathione system
Neurodegeneration
Redox balance
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Gitler AD, Dhillon P, Shorter J. Neurodegenerative disease: Models, mechanisms, and a new hope. Dis Models Mech. 2017;10:499-502. doi: 10.1242/dmm.030205

 

  1. Heemels MT. Neurodegenerative diseases. Nature. 2016;539:179. doi: 10.1038/539179a

 

  1. Singh A, Kukreti R, Saso L, Kukreti Sh. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules. 2019;24(8):1583. doi: 10.3390/molecules24081583

 

  1. Melo A, Monteiro L, Lima RMF, de Oliveira DM, de Cerqueira MD, El-Bachá RS. Oxidative stress in neurodegenerative diseases: Mechanisms and therapeutic perspectives. Oxid Med Cell Longev. 2011;2011:467180. doi: 10.1155/2011/467180

 

  1. Sies Н. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015;4:180-183. doi: 10.1016/j.redox.2015.01.002

 

  1. Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21(7):363-383. doi: 10.1038/s41580-020-0230-3

 

  1. Liu Z, Zhou T, Ziegler AC, Dimitrion P, Zuo L. Oxidative stress in neurodegenerative diseases: From molecular mechanisms to clinical applications. Oxid Med Cell Longev. 2017;2017:2525967. doi: 10.1155/2017/2525967

 

  1. Kim GH, Kim JI, Rhie SJ, Yoon S. The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol. 2015;24(4):325-340. doi: 10.5607/en.2015.24.4.325

 

  1. Frein D, Schildknecht S, Bachschmid M, Ullrich V. Redox regulation: A new challenge for pharmacology. Biochem Pharmacol. 2005;70:811-823. doi: 10.1016/j.bcp.2005.04.012

 

  1. Thomas R, Sanders S, Doust J, Beller E, Glashiou P. Prevalence of attention-deficit/hyperactivity disorder: A systematic review and meta-analysis. Pediatrics. 2015;135(4):e994-E1001. doi: 10.1542/peds.2014-3482

 

 

  1. Cortese-Krott MM, Koning A, Kuhnle GGC, et al. The reactive species interactome: Evolutionary emergence, biological significance, and opportunities for redox metabolomics and personalized medicine. Antioxid Redox Signal. 2017;27(10):2017. doi: 10.1089/ars.2017.7083

 

  1. Berry T, Abohamza E, Moustafa AA. A disease-modifying treatment for Alzheimer’s disease: Focus on the trans-sulfuration pathway. Rev Neurosci. 2019;31:319-334. doi: 10.1515/revneuro-2019

 

  1. Tripathy S, Singh S, Banerjee M, Prakash A. Role of reactive oxygen species in neurodegenerative diseases. In: Neurodegenerative Diseases-Multifactorial Degenerative Processes, Biomarkers and Therapeutic Approaches. 1st ed. Sharjah: Bentham Science Publishers; 2022. p. 59-70. doi: 10.2174/9789815040913122010006

 

  1. Li J, Wuliji O, Li W, Jiang ZG, Ghanbari HA. Oxidative stress and neurodegenerative disorders. Int J Mol Sci. 2013;14(12):24438-24475. doi: 10.3390/ijms141224438

 

  1. Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis. 2013;3(4):461-491. doi: 10.3233/JPD-130230

 

  1. Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015;30(1):11-26. doi: 10.1007/s12291-014-0446-0

 

  1. Rao YL, Ganaraja B, Murlimanju BV, Joy T, Krishnamurthy A, Agrawal A. Hippocampus and its involvement in Alzheimer’s disease: A review. 3 Biotech. 2022;12(2):55. doi: 10.1007/s13205-022-03123-4

 

  1. Agostinho P, Cunha RA, Oliveira C. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des. 2010;16(25):2766-2778. doi: 10.2174/138161210793176572

 

  1. Zuo L, Zhou T, Pannell BK, Ziegler AC, Best TM. Biological and physiological role of reactive oxygen species-the good, the bad and the ugly. Acta Physiol. 2015;214(3):329-348. doi: 10.1111/apha.12515

 

  1. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94(3):909-950. doi: 10.1152/physrev.00026.2013

 

  1. Poewe W, Seppi K, Tanner CM, et al. Parkinson’s disease. Nat Rev Dis Primers. 2017;3:17013. doi: 10.1038/nrdp.2017.13

 

  1. Ferreira MES, de Vasconcelos AS, da Costa Vilhena T, et al. Oxidative stress in Alzheimer’s disease: Should we keep trying antioxidant therapies? Cell Mol Neurobiol. 2015;35(5):595-614. doi: 10.1007/s10571-015-0157-y

 

  1. Fernandez-Fernandez S, Almeida A, Bolaños JP. Antioxidant and bioenergetic coupling between neurons and astrocytes. Biochem J. 2012;443(1):3-11. doi: 10.1042/BJ20111943

 

  1. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47-95. doi: 10.1152/physrev.00018.2001

 

  1. Heneka MT, Carson MJ, El Khoury J. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388-405. doi: 10.1016/S1474-4422(15)70016-5

 

  1. Ansari MA, Scheff SW. Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J Neuropathol Exp Neurol. 2010;69(2):155-167. doi: 10.1097/NEN.0b013e3181cb5af4

 

  1. Tasset I, Sánchez F, Túnez I. Bases moleculares de la enfermedad de Huntington: Papel del estrés oxidativo [The molecular bases of Huntington’s disease: The role played by oxidative stress]. Rev Neurol. 2009;49(8):424-429.

 

  1. Aliev G, Smith MA, de la Torre JC, Perry G. Mitochondria as a primary target for vascular hypoperfusion and oxidative stress in Alzheimer’s disease. Mitochondrion. 2004;4(5- 6):649-663. doi: 10.1016/j.mito.2004.07.018

 

  1. Tymianski M. Emerging mechanisms of disrupted cellular signaling in brain ischemia. Nat Neurosci. 2011;14(11):1369- 1373. doi: 10.1038/nn.2951

 

  1. Murphy MP. Understanding and preventing mitochondrial oxidative damage. Biochem Soc Trans. 2016;44(5):1219- 1226. doi: 10.1042/BST20160108

 

  1. Kumar A, Ratan RR. Oxidative stress and Huntington’s disease: The good, the bad, and the ugly. J Huntingtons Dis. 2016;5(3):217-237. doi: 10.3233/JHD-160205

 

  1. Micó CC, Oliva SB, Tormo GS. Estrés oxidativo en las enfermedades neurodegenerativas. In: Monografías de la Real Academia Nacional de Parmacia. Madrid: Real Academia Nacional de Farmacia; 2010. p. 283-302.

 

  1. Bailo PS, Martín EL, Calmarza P, et al. The role of oxidative stress in neurodegenerative diseases and potential antioxidant therapies. Adv Lab Med. 2022;3(4):342-360. doi: 10.1515/almed-2022-0111

 

  1. Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373-399. doi: 10.1146/annurev.arplant.55.031903.141701

 

  1. Chinta SJ, Andersen JK. Redox imbalance in Parkinson’s disease. Biochim Biophys Acta. 2008;1780(11):1362-1367. doi: 10.1016/j.bbagen.2008.02.005

 

  1. Meiser J, Weindl D, Hiller K. Complexity of dopamine metabolism. Cell Commun Signal. 2013;11(1):34. doi: 10.1186/1478-811X-11-34

 

  1. Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules. 2019;24(8):1583. doi: 10.3390/molecules24081583

 

  1. Tasset I, Sánchez F, Túnez I. The molecular bases of Huntington’s disease: The role played by oxidative stress. Rev Neurol. 2009;49:424-429.

 

  1. Leko MB, Mihelcic M, Jurasovic J, et al. heavy metals and essential metals are associated with cerebrospinal fluid biomarkers of Alzheimer’s disease. Int J Mol Sci. 2023;24(1):467.

 

  1. Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020;11(1):102. doi: 10.1038/s41467-019-13668-3

 

  1. Zhao Y, Zhao B. Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid Med Cell Longev. 2013;2013:316523. doi: 10.1155/2013/316523

 

  1. Murakami K, Murata N, Noda Y, et al. SOD1 (copper/zinc superoxide dismutase) deficiency drives amyloid β protein oligomerization and memory loss in mouse model of Alzheimer disease. J Biol Chem. 2011;286(52):44557-44568. doi: 10.1074/jbc.M111.279208

 

  1. Ciancarelli I, De Amicis D, Di Massimo C, et al. Influence of intensive multifunctional neurorehabilitation on neuronal oxidative damage in patients with Huntington’s disease. Funct Neurol. 2015;30(1):47-52.

 

  1. Sorolla MA, Reverter-Branchat G, Tamarit J, Ferrer I, Ros J, Cabiscol E. Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radic Biol Med. 2008;45(5):667-678. doi: 10.1016/j.freeradbiomed.2008.05.014

 

  1. Kang W, Suzuki M, Saito T, Miyado K. Emerging role of TCA cycle-related enzymes in human diseases. Int J Mol Sci. 2021;22(23):13057. doi: 10.3390/ijms222313057

 

  1. Burchinskii SG. Drugs-energy metabolism regulators in the stroke recovery period: From pharmacology to pharmacotherapy. J Neurosci. 2015;3(1):37-44.

 

  1. Bruni F. Mitochondria: From physiology to pathology. Life (Basel). 2021;11(9):991. doi: 10.3390/life11090991

 

  1. Khodagholi F, Shaerzadeh F, Montazeri F. Mitochondrial aconitase in neurodegenerative disorders: Role of a metabolism-related molecule in neurodegeneration. Curr Drug Targets. 2018;19(8):973-985. doi: 10.2174/1389450118666170816124203

 

  1. Zauner A, Daugherty WP, Bullock MR, Warner DS. Brain oxygenation and energy metabolism. Neurosurgery. 2002;51(2):289-302.

 

  1. Vallières C, Benoit O, Guittet O, Vernis L. Iron-sulfur protein odyssey: Exploring their cluster functional versatility and challenging identification. Metallomics. 2024;16:mfae025. doi: 10.1093/mtomcs/mfae025

 

  1. Villa RF, Gorini A, Hoyer S. Effect of ageing and ischemia on enzymatic activities linked to Krebs’ cycle, electron transfer chain, glutamate and aminoacids metabolism of free and intrasynaptic mitochondria of cerebral cortex. Neurochem Res. 2009;34(12):2102-2116. doi: 10.1007/s11064-009-0004-y

 

  1. Shadel GS. Mitochondrial DNA, aconitase “wraps” it up. Trends Biochem Sci. 2005;30(6):294-296. doi: 10.1016/j.tibs.2005.04.007

 

  1. Paraskeva E, Hentze MW. Iron-sulphur clusters as genetic regulatory switches: The bifunctional iron regulatory protein-1. FEBS Lett. 1996;389(1):40-43. doi: 10.1016/0014-5793(96)00574-1

 

  1. Sadat R, Barca E, Masand R, et al. Functional cellular analyses reveal energy metabolism defect and mitochondrial DNA depletion in a case of mitochondrial aconitase deficiency. Mol Genet Metab. 2016;118(1):28-34. doi: 10.1016/j.ymgme.2016.03.004

 

  1. Gandhi S, Abramov AY. Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev. 2012;2012:428010. doi: 10.1155/2012/428010

 

  1. Galea E, Launay N, Portero-Otin M, et al. Oxidative stress underlying axonal degeneration in adrenoleukodystrophy: A paradigm for multifactorial neurodegenerative diseases? Biochim Biophys Acta. 2012;1822(9):1475-1488. doi: 10.1016/j.bbadis.2012.02.005

 

  1. Padalko V, Posnik F, Adamczyk M. Mitochondrial aconitase and its contribution to the pathogenesis of neurodegenerative diseases. Int J Mol Sci. 2024;25(18):9950. doi: 10.3390/ijms25189950

 

  1. Mallajosyula JK, Chinta SJ, Rajagopalan S, Nicholls DG, Andersen JK. Metabolic control analysis in a cellular model of elevated MAO-B: Relevance to Parkinson’s disease. Neurotox Res. 2009;16(3):186-193. doi: 10.1007/s12640-009-9032-2

 

  1. Huang HM, Zhang H, Xu H, Gibson GE. Inhibition of the alpha-ketoglutarate dehydrogenase complex alters mitochondrial function and cellular calcium regulation. Biochim Biophys Acta. 2003;1637(1):119-126. doi: 10.1016/s0925-4439(02)00222-3

 

  1. Starkov AA. An update on the role of mitochondrial α-ketoglutarate dehydrogenase in oxidative stress. Mol Cell Neurosci. 2013;55:13-16. doi: 10.1016/j.mcn.2012.07.005

 

  1. Tretter L, Adam-Vizi V. Alpha-ketoglutarate dehydrogenase: A target and generator of oxidative stress. Philos Trans R Soc Lond B Biol Sci. 2005;360(1464):2335-2345. doi: 10.1098/rstb.2005.1764

 

  1. Park LC, Zhang H, Sheu KF, et al. Metabolic impairment induces oxidative stress, compromises inflammatory responses, and inactivates a key mitochondrial enzyme in microglia. J Neurochem. 1999;72(5):1948-1958. doi: 10.1046/j.1471-4159.1999.0721948.x

 

  1. Kiss G, Konrad C, Doczi J, et al. The negative impact of α-ketoglutarate dehydrogenase complex deficiency on matrix substrate-level phosphorylation. FASEB J. 2013;27(6):2392-2406. doi: 10.1096/fj.12-220202

 

  1. Gibson GE, Xu H, Chen HL, Chen W, Denton TT, Zhang S. Alpha-ketoglutarate dehydrogenase complex-dependent succinylation of proteins in neurons and neuronal cell lines. J Neurochem. 2015;134(1):86-96. doi: 10.1111/jnc.13096

 

  1. Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G. Oxidative stress in Alzheimer’s disease. Biochim Biophys Acta. 2000;1502(1):139-144. doi: 10.1016/s0925-4439(00)00040-5

 

  1. Shi Q, Xu H, Kleinman WA, Gibson GE. Novel functions of the alpha-ketoglutarate dehydrogenase complex may mediate diverse oxidant-induced changes in mitochondrial enzymes associated with Alzheimer’s disease. Biochim Biophys Acta. 2008;1782(4):229-238. doi: 10.1016/j.bbadis.2007.12.008

 

  1. Mastrogiacomo F, Bergeron C, Kish SJ. Brain alpha-ketoglutarate dehydrogenase complex activity in Alzheimer’s disease. J Neurochem. 1993;61(6):2007-2014. doi: 10.1111/j.1471-4159.1993.tb07436.x

 

  1. Bubber P, Haroutunian V, Fisch G, Blass JP, Gibson GE. Mitochondrial abnormalities in Alzheimer brain: Mechanistic implications. Ann Neurol. 2005;57(5):695-703. doi: 10.1002/ana.20474

 

  1. Terwel D, Bothmer J, Wolf E, Meng F, Jolles J. Affected enzyme activities in Alzheimer’s disease are sensitive to antemortem hypoxia. J Neurol Sci. 1998;161(1):47-56. doi: 10.1016/s0022-510x(98)00240-8

 

  1. Magistretti PJ, Allaman I. Brain energy metabolism. In: Pfaff DW, editor. Neuroscience in the 21st Century. Vol. 51. Berlin: Springer; 2013. p. 1591-1620. doi: 10.1007/978-1-4614-1997-6_56

 

 

  1. Rodriguez-Rodriguez P, Fernandez E, Almeida A, Bolanos JP. Excitotoxic stimulus stabilizes PFKFB3 causing pentose-phosphate pathway to glycolysis switch and neurodegeneration. Cell Death Differ. 2012;19(10):1582- 1589. doi: 10.1038/cdd.2012.33 2012

 

  1. Shimohama S, Tanino H, Kawakami N, et al. Activation of NADPH oxidase in Alzheimer’s disease brains. Biochem Biophys Res Commun. 2000;273(1):5-9. doi: 10.1006/bbrc.2000.2897

 

  1. Jeng W, Loniewska MM, Wells PG. Brain glucose-6- phosphate dehydrogenase protects against endogenous oxidative DNA damage and neurodegeneration in aged mice. ACS Chem Neurosci. 2013;4(7):1123-1132. doi: 10.1021/cn400079y

 

  1. Bustamante-Barrientos FA, Luque-Campos N, Araya MJ, et al. Mitochondrial dysfunction in neurodegenerative disorders: Potential therapeutic application of mitochondrial transfer to central nervous system-residing cells. J Transl Med. 2023;21(1):613. doi: 10.1186/s12967-023-04493-w

 

  1. Connolly NMC, Theurey P, Adam-Vizi V, et al. Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases. Cell Death Differ. 2018;25(3):542-572. doi: 10.1038/s41418-017-0020-4

 

  1. Pathak D, Berthet A, Nakamura K. Energy failure: Does it contribute to neurodegeneration? Ann Neurol. 2013;74(4):506-516. doi: 10.1002/ana.24014

 

  1. Yin F, Boveris A, Cadenas E. Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. Antioxid Redox Signal. 2014;20(2):353-371. doi: 10.1089/ars.2012.4774

 

  1. Zhu X, Perry G, Moreira PI, et al. Mitochondrial abnormalities and oxidative imbalance in Alzheimer’s disease. J Alzheimers Dis. 2006;9(2):147-153. doi: 10.3233/jad-2006-9207

 

  1. Yokoyama Y, Beckman JS, Beckman TK. Circulating xanthine oxidase: Potential mediator of ischemic injury. Am J Physiol. 1990;258:G564-G570. doi: 10.1152/ajpgi.1990.258.4.G564

 

  1. Coon MJ, Ding XX, Pernecky SJ, Vaz AD. Cytochrome P450: Progress and forecasts. FASEB J. 1992;6(2):669-673. doi: 10.1096/fasebj.6.2.1537454

 

  1. Corvo ML, Marinho HS, Marcelino P, et al. Superoxide dismutase enzymosomes: Carrier capacity optimization, in vivo behaviour and therapeutic activity. Pharm Res. 2015;32:91-102. doi: 10.1007/s11095-014-1447-7

 

  1. Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem. 1995;64:97-112. doi: 10.1146/annurev.bi.64.070195.000525

 

  1. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408(6809):239-247. doi: 10.1038/35041687

 

  1. Wyss-Coray T, Mucke L. Inflammation in neurodegenerative disease - a double-edged sword. Neuron. 2002;35(3):419-432. doi: 10.1016/s0896-6273(02)00794-8

 

  1. Albers DS, Beal MF. Mitochondrial dysfunction and oxidative stress in aging and neurodegenerative disease. J Neural Transm Suppl. 2000;59:133-154. doi: 10.1007/978-3-7091-6781-6_16

 

  1. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787-795. doi: 10.1038/nature05292

 

  1. Ross CA, Tabrizi SJ. Huntington’s disease: From molecular pathogenesis to clinical treatment. Lancet Neurol. 2011;10(1):83-98. doi: 10.1016/S1474-4422(10)70245-3

 

  1. González-Casacuberta I, Juárez-Flores DL, Morén C, Garrabou G. Bioenergetics and autophagic imbalance in patients-derived cell models of Parkinson disease supports systemic dysfunction in neurodegeneration. Front Neurosci. 2019;13:894. doi: 10.3389/fnins.2019.00894

 

  1. Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med. 2013;19(8):983-997. doi: 10.1038/nm.3232

 

  1. Gu F, Chauhan V, Chauhan A. Glutathione redox imbalance in brain disorders. Curr Opin Clin Nutr Metab Care. 2015;18(1):89-95. doi: 10.1097/MCO.0000000000000134

 

  1. Iskusnykh IY, Zakharova AA, Pathak D. Review glutathione in brain disorders and aging. Molecules. 2022;27(1):324. doi: 10.3390/molecules27010324

 

  1. Lushchak VI. Glutathione homeostasis and functions: Potential targets for medical interventions. J Amino Acids. 2012;2012:736837. doi: 10.1155/2012/736837

 

  1. Kumar C, Igbaria A, D’autreaux B, et al. Glutathione revisited: A vital function in iron metabolism and ancillary role in thiol-redox control. EMBO J. 2011;30(10):2044-2056.

 

  1. McBean GJ, López MG, Wallner FK. Redox-based therapeutics in neurodegenerative disease. Br J Pharmacol. 2017;174(12):1750-1770. doi: 10.1111/bph.13551

 

  1. Aoyama K, Nakaki T. Impaired glutathione synthesis in neurodegeneration. Int J Mol Sci. 2013;14(10):21021-21044. doi: 10.3390/ijms141021021

 

  1. Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease. Biomed Pharmacother. 2003;57(3-4):145-155. doi: 10.1016/s0753-3322(03)00043-x

 

  1. Lushchak VI. Interplay between bioenergetics and oxidative stress at normal brain aging. Aging as a result of increasing disbalance in the system oxidative stress-energy provision. Pflugers Arch. 2021;473(5):713-722. doi: 10.1007/s00424-021-02531-4

 

  1. Navarro A, Boveris A. Rat brain and liver mitochondria develop oxidative stress and lose enzymatic activities on aging. Am J Physiol Regul Integr Comp Physiol. 2004;287(5):R1244-R1249. doi: 10.1152/ajpregu.00226.2004

 

  1. Filonenko V, Gout I. Discovery and functional characterisation of protein CoAlation and the antioxidant function of coenzyme A. BBA Adv. 2023;3:100075. doi: 10.1016/j.bbadva.2023.100075

 

  1. Popov D. Protein S-glutathionylation: from current basics to targeted modifications. Arch Physiol Biochem. 2014;120(4):123-130. doi: 10.3109/13813455.2014.944544

 

  1. Pastore A, Piemonte F. S-Glutathionylation signaling in cell biology: Progress and prospects. Eur J Pharm Sci. 2012;46(5):279-292. doi: 10.1016/j.ejps.2012.03.010

 

  1. Cha SJ, Kim H, Choi HJ, Lee S, Kim K. Protein glutathionylation in the pathogenesis of neurodegenerative diseases. Oxid Med Cell Longev. 2017;2017:2818565. doi: 10.1155/2017/2818565

 

  1. McBean GJ. Thiol redox homeostasis in neurodegenerative disease. Redox Biol. 2015;5:186-194. doi: 10.1016/j.redox.2015.04.004

 

  1. Poole LB. The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med. 2015;80:148-157. doi: 10.1016/j.freeradbiomed.2014.11.013

 

  1. Morris G, Anderson G, Dean O, et al. The glutathione system: A new drug target in neuroimmune disorders. Mol Neurobiol. 2014;50(3):1059-1084. doi: 10.1007/s12035-014-8705-x

 

  1. Jones DP. Redox potential of GSH/GSSG couple: Assay and biological significance. Methods Enzymol. 2002;348:93-112. doi: 10.1016/s0076-6879(02)48630-2

 

  1. Wagenführ L, Meyer AK, Marrone L, Storch A. Oxygen tension within the neurogenic niche regulates dopaminergic neurogenesis in the developing midbrain. Stem Cells Dev. 2016;25(3):227-238. doi: 10.1089/scd.2015.0214

 

  1. Simon E, Vogel M, Fingerhut R, Ristoff E, Mayatepek E, Spiekerkötter U. Diagnosis of glutathione synthetase deficiency in newborn screening. J Inherit Metab Dis. 2009;32 Suppl 1:S269-S272. doi: 10.1007/s10545-009-1213-x

 

  1. Anderson MF, Sims NR. The effects of focal ischemia and reperfusion on the glutathione content of mitochondria from rat brain subregions. J Neurochem. 2002;81(3):541-549. doi: 10.1046/j.1471-4159.2002.00836.x

 

  1. Semchyshyn H. Is carbonyl/AGE/RAGE stress a hallmark of the brain aging? Pflugers Arch. 2021;473(5):723-734. doi: 10.1007/s00424-021-02529-y

 

  1. Cnubben NH, Rietjens IM, Wortelboer H, van Zanden J, van Bladeren PJ. The interplay of glutathione-related processes in antioxidant defense. Environ Toxicol Pharmacol. 2001;10(4):141-152. doi: 10.1016/s1382-6689(01)00077-1

 

  1. Makarov P, Kropf S, Wiswedel I, Augustin W, Schild L. Consumption of redox energy by glutathione metabolism contributes to hypoxia/reoxygenation-induced injury in astrocytes. Mol Cell Biochem. 2006;286(1-2):95-101. doi: 10.1007/s11010-005-9098-y

 

  1. Dringen R. Metabolism and functions of glutathione in brain. Prog Neurobiol. 2000;62(6):649-671. doi: 10.1016/s0301-0082(99)00060-x

 

  1. Marí M, Morales A, Colell A, García-Ruiz C, Fernández- Checa JC. Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal. 2009;11(11):2685-2700. doi: 10.1089/ARS.2009.2695

 

  1. Ebrahimi-Fakhari D, Cantuti-Castelvetri I, Fan Z, et al. Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of α-synuclein. J Neurosci. 2011;31(41):14508-14520. doi: 10.1523/JNEUROSCI.1560-11.201

 

  1. Yaribeygi H, Panahi Y, Javadi B, Sahebkar A. The underlying role of oxidative stress in neurodegeneration: A mechanistic review. CNS Neurol Disord Drug Targets. 2018;17(3):207-215. doi: 10.2174/1871527317666180425122557

 

  1. Niedzielska E, Smaga I, Gawlik M, et al. Oxidative stress in neurodegenerative diseases. Mol Neurobiol. 2016;53(6):4094- 4125. doi: 10.1007/s12035-015-9337-5

 

  1. Guo F, Liu X, Cai H, Le W. Autophagy in neurodegenerative diseases: Pathogenesis and therapy. Brain Pathol. 2018;28(1):3-13. doi: 10.1111/bpa.12545

 

  1. Haelterman NA, Yoon WH, Sandoval H, Jaiswal M, Shulman JM, Bellen HJ. A mitocentric view of Parkinson’s disease. Annu Rev Neurosci. 2014;37:137-159. doi: 10.1146/annurev-neuro-071013-014317

 

  1. Hattori N, Arano T, Hatano T, Mori A, Imai Y. Mitochondrial-associated membranes in Parkinson’s disease. Adv Exp Med Biol. 2017;997:157-169. doi: 10.1007/978-981-10-4567-7_12

 

  1. Haylett W, Swart C, van der Westhuizen F, et al. Altered mitochondrial respiration and other features of mitochondrial function in parkin-mutant fibroblasts from Parkinson’s disease patients. Parkinsons Dis. 2016;2016:1819209. doi: 10.1155/2016/1819209

 

  1. Sidorova Y, Domanskyi A. Detecting oxidative stress biomarkers in neurodegenerative disease models and patients. Methods Protoc. 2020;3(4):66. doi: 10.3390/mps3040066

 

  1. Bashun N, Kanunnikova N, Semenovich D, Raduta E, Lis R. Influence of glycyl-proline on the changes of the neuroactive amino acid metabolism and oxidative stress parameters in the rat brain in experimental Parkinson’s model. German Sci Herald. 2017;1:13-18. doi: 10.19221/201714

 

  1. Kim YH, Lussier S, Rane A, Choi SW, Andersen JK. Inducible dopaminergic glutathione depletion in an α-synuclein transgenic mouse model results in age-related olfactory dysfunction. Neuroscience. 2011;172:379-386. doi: 10.1016/j.neuroscience.2010.10.072

 

  1. Wu Y, Fan Y, Xue B, et al. Human glutathione S-transferase P1-1 interacts with TRAF2 and regulates TRAF2-ASK1 signals. Oncogene. 2006;25(42):5787-5800. doi: 10.1038/sj.onc.1209576

 

  1. Dusinska M, Staruchova M, Horska A, et al. Are glutathione S-transferases involved in DNA damage signalling? Interactions with DNA damage and repair revealed from molecular epidemiology studies. Mutat Res. 2012;736(1-2):130-137. doi: 10.1016/j.mrfmmm.2012.03.003

 

  1. Kuo YC, Ng IW, Rajesh R. Glutathione- and apolipoprotein E-grafted liposomes to regulate mitogen-activated protein kinases and rescue neurons in Alzheimer’s disease. Mater Sci Eng C Mater Biol Appl. 2021;127:112233. doi: 10.1016/j.msec.2021.112233

 

  1. Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386(9996):896-912. doi: 10.1016/S0140-6736(14)61393-3

 

  1. Klein C, Westenberger A. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(1):a008888. doi: 10.1101/cshperspect.a008888

 

  1. Guido K, John CR. Mitochondrial control of cell death. Nat. Med. 2000;6:513-519. doi: 10.1038/74994

 

  1. Picard M, McEwen BS. Mitochondria impact brain function and cognition. Proc Natl Acad Sci U S A. 2014;111(1):7-8. doi: 10.1073/pnas.1321881111

 

  1. Beiswanger CM, Diegmann MH, Novak RF, et al. Developmental changes in the cellular distribution of glutathione and glutathione S-transferases in the murine nervous system. Neurotoxicology. 1995;16(3):425-440.

 

  1. Hamilton A, Holscher C. The effect of ageing on neurogenesis and oxidative stress in the APP(swe)/ PS1(deltaE9) mouse model of Alzheimer’s disease. Brain Res. 2012;1449:83-93. doi: 10.1016/j.brainres.2012.02.015

 

  1. Lu SC. Regulation of glutathione synthesis. Mol Aspects Med. 2009;30(1-2):42-59. doi: 10.1016/j.mam.2008.05.005

 

  1. Liang R, Zhu L, Huang Y, Chen J, Tang Q. Mitochondria: Fundamental characteristics, challenges, and impact on aging. Biogerontology. 2024;25(6):923-941. doi: 10.1007/s10522-024-10132-8

 

  1. Bartman S, Coppotelli G, Ross JM. Mitochondrial dysfunction: A key player in brain aging and diseases. Curr Issues Mol Biol. 2024;46(3):1987-2026. doi: 10.3390/cimb46030130

 

  1. Olmedillas Del Moral M, Fröhlich N, Figarella K, Mojtahedi N, Garaschuk O. Effect of caloric restriction on the in vivo functional properties of aging microglia. Front Immunol. 2020;11:750. doi: 10.3389/fimmu.2020.00750

 

  1. Araújo JE, Jorge S, Santos HM, et al. Proteomic changes driven by urban pollution suggest particulate matter as a deregulator of energy metabolism, mitochondrial activity, and oxidative pathways in the rat brain. Sci Total Environ. 2019;687:839-848. doi: 10.1016/j.scitotenv.2019.06.102

 

  1. Sarkar A, Ghosh S. SARS-CoV-2 persistence: A potential catalyst for age-associated neurodegenerative diseases. Adv Neurol. 2024;3(4):4267. doi: 10.36922/an.4267

 

  1. Martin B, Mattson MP, Maudsley S. Caloric restriction and intermittent fasting: Two potential diets for successful brain aging. Ageing Res Rev. 2006;5:332-353. doi: 10.1016/j.arr.2006.04.002

 

  1. Yan MH, Wang X, Zhu X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic Biol Med. 2013;62:90-101. doi: 10.1016/j.freeradbiomed.2012.11.014

 

  1. Goldman SM. Environmental toxins and Parkinson’s disease. Annu Rev Pharmacol Toxicol. 2014;54:141-164. doi: 10.1146/annurev-pharmtox-011613-135937

 

  1. Zhang X, Wang L, Li B, Shi J, Xu J, Yuan M. Targeting mitochondrial dysfunction in neurodegenerative diseases: Expanding the therapeutic approaches by plant-derived natural products. Pharmaceuticals (Basel). 2023;16(2):277. doi: 10.3390/ph16020277

 

  1. Hao H, Zheng X, Wang G. Insights into drug discovery from natural medicines using reverse pharmacokinetics. Trends Pharmacol Sci. 2014;35(4):168-177. doi: 10.1016/j.tips.2014.02.001

 

  1. Moiseenok AG, Kanunnikova NP. Brain CoA and acetyl CoA metabolism in mechanisms of neurodegeneration. Biochemistry (Mosc). 2023;88(4):466-480. doi: 10.1134/S000629792304003X

 

  1. Mazo NA, Echeverria V, Cabezas R, et al. Medicinal plants as protective strategies against Parkinson’s disease. Curr Pharm Des. 2017;23(28):4180-4188. doi: 10.2174/1381612823666170316142803

 

  1. Etminan M, Gill SS, Samii A. Intake of vitamin E, vitamin C, and carotenoids and the risk of Parkinson’s disease: A meta-analysis. Lancet Neurol. 2005;4(6):362-365. doi: 10.1016/S1474-4422(05)70097-1

 

  1. Shults CW, Oakes D, Kieburtz K, et al. Effects of coenzyme Q10 in early Parkinson disease: Evidence of slowing of the functional decline. Arch Neurol. 2002;59(10):1541-1550. doi: 10.1001/archneur.59.10.1541

 

  1. Zhu ZG, Sun MX, Zhang WL, Wang WW, Jin YM, Xie CL. The efficacy and safety of coenzyme Q10 in Parkinson’s disease: A meta-analysis of randomized controlled trials. Neurol Sci. 2017;38(2):215-224. doi: 10.1007/s10072-016-2757-9

 

  1. Chen Z, Zhong C. Oxidative stress in Alzheimer’s disease. Neurosci Bull. 2014;30(2):271-281. doi: 10.1007/s12264-013-1423-y

 

  1. Zaitone SA, Abo-Elmatty DM, Shaalan AA. Acetyl-L-carnitine and α-lipoic acid affect rotenone-induced damage in nigral dopaminergic neurons of rat brain, implication for Parkinson’s disease therapy. Pharmacol Biochem Behav. 2012;100(3):347-360. doi: 10.1016/j.pbb.2011.09.002

 

  1. Islam F, Nafady MH, Islam MR, et al. Resveratrol and neuroprotection: An insight into prospective therapeutic approaches against Alzheimer’s disease from bench to bedside. Mol Neurobiol. 2022;59(7):4384-4404. doi: 10.1007/s12035-022-02859-7

 

  1. Smith MA. Oxidative stress and iron imbalance in Alzheimer disease: How rust became the fuss!. J Alzheimer’s Dis. 2006;9(suppl. 3):305-308. doi: 10.3233/jad-2006-9s334

 

  1. Gil-Mohapel J, Brocardo PS, Christie BR. The role of oxidative stress in Huntington’s disease: Are antioxidants good therapeutic candidates? Curr Drug Targets. 2014;15(4):454-468. doi:10.2174/138945011566614011 5113734 155. Zuccato C, Valenza M, Cattaneo E. Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev. 2010;90(3):905-981. doi: 10.1152/physrev.00041.2009

 

  1. Valgimigli L. Lipid peroxidation and antioxidant protection. Biomolecules. 2023;13(9):1291. doi: 10.3390/biom13091291

 

  1. Rabiei Z, Solati K, Amini-Khoei H. Phytotherapy in treatment of Parkinson’s disease: A review. Pharm. Biol. 2019; 57:355-362. doi: 10.1080/13880209.2019.1618344

 

  1. Atlante A, Amadoro G, Latina V, Valenti D. Therapeutic potential of targeting mitochondria for Alzheimer’s disease treatment. J Clin Med. 2022;11(22):6742. doi: 10.3390/jcm11226742

 

  1. Zorov DB, Andrianova NV, Babenko VA, et al. Neuroprotective potential of mild uncoupling in mitochondria. Pros and Cons. Brain Sci. 2021;11(8):1050. doi: 10.3390/brainsci11081050

 

  1. Gohel D, Singh R. Mitohormesis; Potential implications in neurodegenerative diseases. Mitochondrion. 2021;56:40-46. doi: 10.1016/j.mito.2020.11.011

 

  1. Tapia PC. Sublethal mitochondrial stress with an attendant stoichiometric augmentation of reactive oxygen species may precipitate many of the beneficial alterations in cellular physiology produced by caloric restriction, intermittent fasting, exercise and dietary phytonutrients: “Mitohormesis” for health and vitality. Med Hypotheses. 2006;66(4):832-843. doi: 10.1016/j.mehy.2005.09.009

 

  1. De Felice FG, Wasilewska-Sampaio AP, Barbosa AC, Gomes FC, Klein WL, Ferreira ST. Cyclic AMP enhancers and Abeta oligomerization blockers as potential therapeutic agents in Alzheimer’s disease. Curr Alzheimer Res. 2007;4(3):263-271. doi: 10.2174/156720507781077287

 

  1. Zhou B, Westaway SK, Levinson B, Johnson MA, Gitschier J, Hayflick SJ. A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet. 2001;28(4):345-349. doi: 10.1038/ng572

 

  1. Patassini S, Begley P, Xu J, et al. Cerebral vitamin B5 (D-pantothenic acid) deficiency as a potential cause of metabolic perturbation and neurodegeneration in Huntington’s disease. Metabolites. 2019;9:113. doi: 10.3390/metabo9060113

 

  1. Xu J, Patassini S, Begley P, et al. Cerebral deficiency of vitamin B5 (d-pantothenic acid; pantothenate) as a potentially-reversible cause of neurodegeneration and dementia in sporadic Alzheimer’s disease. Biochem Biophys Res Commun. 2020;527:676-681. doi: 10.1016/j.bbrc.2020.05.015

 

  1. Scholefield M, Church SJ, Xu J, et al. Substantively lowered levels of pantothenic acid (vitamin B5) in several regions of the human brain in Parkinson’s disease dementia. Metabolites. 2021;11(9):569. doi: 10.3390/metabo11090569

 

  1. Ismail N, Kureishy N, Church SJ, et al. Vitamin B5 (d-pantothenic acid) localizes in myelinated structures of the rat brain: Potential role for cerebral vitamin B5 stores in local myelin homeostasis. Biochem Biophys Res Commun. 2020;522(1):220-225. doi: 10.1016/j.bbrc.2019.11.052

 

  1. Villalón-García I, Povea-Cabello S, Álvarez-Córdoba M, et al. Vicious cycle of lipid peroxidation and iron accumulation in neurodegeneration. Neural Regeneration Res. 2023;18(6):1196-1202. doi: 10.4103/1673-5374.358614

 

  1. Semenovich DS, Kanunnikova NP, Moiseenok АG. Oxidative stress in mitochondria of the brain tissue with aluminum neurotoxycosis and applying of glutathione and modulators of coenzyme A biosynthesis. Doklady Nat Acad Sci Belarus. 2020;64(1):78-85. doi: 10.29235/1561-8323-2020-64-1-78-85

 

  1. Semenovich DS, Kanunnikova NP. S-glutathionylation of proteins in various types of neurodegenerative pathology and protective effects of pantothenic acid derivatives. J Integr OMICS. 2020;10(1):19-25. doi: 10.5584/jiomics.v10i1.307

 

  1. Kanunnikova NP, Semenovich DS, Katkovskaya IN, et al. Modelling the redox imbalance and oxidative stress in the hippocampus at aluminum neurotoxicity аnd initiating the coenzyme a biosynthesis. Doklady Nat Acad Sci Belarus. 2023;64(6):481-489.

 

  1. Semenovich DS, Lukienko EP, Kanunnikova NP. Modulating oxidative stress indices and thiol-disulfide balance in the brain structures by pantothenic acid derivatives in an experimental model of Parkinson’s disease. Neurochem J. 2021;15:24-29. doi: 10.1134/S1819712421010128

 

  1. Semenovich DS, Gurinovich VA, Lukienko EP, et al. The effects of modulators of the coenzyme a biosynthesis system on metabolic stress and the glutathione system in the CNS in aluminum neurotoxicosis. Neurochem J. 2023;17(1):65-74. doi: 10.29235/1561-8323-2020-64-1-78-85

 

  1. Egilmez CB, Pazarlar BA, Erdogan MA, Erbas O. Neuroprotective effect of dexpanthenol on rotenone-induced Parkinson’s disease model in rats. Neurosci Lett. 2024;818:137575. doi: 10.1016/j.neulet.2023.137575

 

  1. Unlu MD, Savran M, Imeci O, Asci H, Ozmen O. The pantothenic acid derivative dexpanthenol ameliorated doxorubicin-induced neurotoxicity via regulating AKT/ CREB/BDNF and AKT/NRF2 signaling pathways. Mol Biol Rep. 2025;52(1):228. doi: 10.1007/s11033-025-10228-5

 

  1. Erdogan MA, Yigitturk G, Erbas O, Taskıran D. Neuroprotective effects of dexpanthenol on streptozotocin-induced neuronal damage in rats. Drug Chem Toxicol. 2022;45(5):2160-2168. doi: 10.1080/01480545.2021.1914464

 

  1. Karahan G, Kaya H, Eyceyurt R, Erdogan MA, Yigitturk G, Erbas O. Dexpanthenol reduces fibrosis and aids repair following nerve laceration and neurorrhaphy. Exp Ther Med. 2021;21(3):207. doi: 10.3892/etm.2021.9639

 

  1. Korkmaz MF, Parlakpinar H, Erdem MN, et al. The therapeutic efficacy of dexpanthenol on sciatic nerve injury in a rat model. Br J Neurosurg. 2020;34(4):397-401. doi: 10.1080/02688697.2020.1749984

 

  1. Unal GO, Asci H, Erzurumlu Y, Ilhan I, Hasseyid N, Ozmen O. Dexpanthenol may protect the brain against lipopolysaccharide induced neuroinflammation via anti-oxidant action and regulating CREB/BDNF signaling. Immunopharmacol Immunotoxicol. 2022;44(1):1-8. doi: 10.1080/08923973.2021.2025246

 

  1. Bashun NZ, Raduta EF, Balash ZI, et al. Correction of postischemic disturbances in the hemispheres of the brain using precursors of succinyl-CoA biosynthesis. Neurochem J. 2007;1:249-252. doi: 10.1134/S1819712407030130

 

  1. Kanunnikova NP, Bashun NZ, Moiseenok AG. Use of CoA biosynthesis modulators and selenoprotein model substances in correction of brain ischemic and reperfusion injuries. In: Catala A, editor. Lipid Peroxidation. Vol. 3. London: Intechopen; 2012. p. 492-513. doi: 10.5772/46077

 

  1. Baranger K, van Gijsel-Bonnello M, Stephan D, et al. Long-term pantethine treatment counteracts pathologic gene dysregulation and decreases Alzheimer’s disease pathogenesis in a transgenic mouse model. Neurotherapeutics. 2019;16(4):1237-1254. doi: 10.1007/s13311-019-00754-z

 

  1. Semenovich DS, Lukiyenko EP, Titko OV, Kanunnikova NP. Panthenol and succinate as modulators of changes of redox balance and energy metabolism in the experimental model of Parkinson’s disease. Indian J Appl Res. 2018;8(8):436-438. doi: 10.36106/IJAR

 

Share
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Print ISSN: 3060-8589, Published by AccScience Publishing