AccScience Publishing / AN / Online First / DOI: 10.36922/an.3166
ORIGINAL RESEARCH ARTICLE

Proteomic analysis of exosomes derived from detrimental and protective microglia

Lingyun Bai1 Fangyu Chen2 Shengnan Xia2 Xiang Cao1,2,3*
Show Less
1 Department of Neurology, Joint Institute of Nanjing Drum Tower Hospital for Life and Health, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China
2 Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
3 State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu, China
Advanced Neurology 2024, 3(3), 3166 https://doi.org/10.36922/an.3166
Submitted: 14 March 2024 | Accepted: 14 June 2024 | Published: 7 August 2024
(This article belongs to the Special Issue Advances in stroke research and therapy)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Microglia, the primary resident immune cells in the brain, exhibit two distinct functional states: The detrimental (M1) phenotype and the protective (M2) phenotype. Exosomes, which are released by various cell types, play crucial roles in intercellular communication. While existing studies have shown that exosomes from microglia with different activation states can affect neuronal survival following ischemic stroke, a comprehensive exploration of the differences between these microglial phenotypes is still lacking. In this study, we treated primary microglia with lipopolysaccharide(LPS) or interleukin-4 (IL-4) to induce the M1 or M2 phenotype, respectively, and investigated the characteristics of the resulting exosomes. These microglia-derived exosomes can be internalized by neurons. Specifically, exosomes derived from M1microglia (M1-EXOs) exacerbated ischemia-induced neuronal apoptosis both in vivo and in vitro, while exosomes from M2 microglia (M2-EXOs) exhibited a protective effect. Subsequently, we conducted a quantitative proteomic analysis of M1-EXOsand M2-EXOs, characterizing 1129 proteins. Notably, M1-EXO proteins were primarily associated with inflammatory responses, neutrophil chemotaxis, and complement activation. In contrast, M2-EXO proteins were predominantly involved in protein transport and cellular proliferation. In addition, we analyzed key proteins, includingIL-6, SAA3, CCL5, CCL9, C3, CFB, SRGN, and sphingosine-1-phosphate phosphatase 1,which play central roles in the protein-protein interaction network. Overall, this dataset provides valuable insights into the proteomic profiles of exosomes derived from microglia with distinct phenotypes, enhancing our understanding of the mechanisms underlying microglial involvement in central nervous system diseases.

Keywords
Microglia
Exosomal proteins
Ischemic stroke
Proteomics
Funding
This research was supported by the National Natural Science Foundation of China (82371326, 82171310), Jiangsu Provincial ‘333’ High-level Talent Training Project Funding.
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Salter MW, Stevens B. Microglia emerge as central players in brain disease. Nat Med. 2017;23(9):1018-1027.doi: 10.1038/nm.4397

 

  1. Saini V, Guada L, Yavagal DR. Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology. 2021;97:S6-S16. doi: 10.1212/WNL.0000000000012781

 

  1. Baron JC. Protecting the ischaemic penumbra as anadjunct to thrombectomy for acute stroke. Nat Rev Neurol. 2018;14(6):325-337. doi: 10.1038/s41582-018-0002-2

 

  1. Gauberti M, Montagne A, Marcos-Contreras OA, Le Behot A, Maubert E, Vivien D. Ultra-sensitive molecular MRI of vascular cell adhesion molecule-1 reveals a dynamic inflammatory penumbra after strokes. Stroke. 2013;44(7):1988-1996. doi: 10.1161/STROKEAHA.111.000544

 

  1. Hu X, Li P, Guo Y, et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke. 2012;43(11):3063-3070. doi: 10.1161/STROKEAHA.112.659656

 

  1. Hu X, Leak RK, Shi Y, et al. Microglial and macrophage polarization-new prospects for brain repair. Nat Rev Neurol. 2015;11(1):56-64. doi: 10.1038/nrneurol.2014.207

 

  1. Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88:487-514. doi: 10.1146/annurev-biochem-013118-111902

 

  1. Ridler C. Designer exosomes alleviate neurotoxicity. Nat Rev Neurol. 2018;14(6):316-317. doi: 10.1038/s41582-018-0006-y

 

  1. Hong T, Zhao T, He W, et al. Exosomal circBBS2 inhibits ferroptosis by targeting miR-494 to activate SLC7A11 signaling in ischemic stroke. FASEB J. 2023;37(9):e23152.doi: 10.1096/fj.202300317RRR

 

  1. Dumbrava DA, Surugiu R, Borger V, et al. Mesenchymal stromal cell-derived small extracellular vesicles promote neurological recovery and brain remodeling after distal middle cerebral artery occlusion in aged rats. Geroscience. 2022;44(1):293-310. doi: 10.1007/s11357-021-00483-2

 

  1. Xie L, Zhao H, Wang Y, Chen Z. Exosomal shuttled miR- 424-5p from ischemic preconditioned microglia mediates cerebral endothelial cell injury through negatively regulation of FGF2/STAT3 pathway. Exp Neurol. 2020;333:113411. doi: 10.1016/j.expneurol.2020.113411

 

  1. Song Y, Li Z, He T, et al. M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124. Theranostics. 2019;9(10):2910-2923. doi: 10.7150/thno.30879

 

  1. Meng H, Zhao H, Cao X, et al. Double-negative T cells remarkably promote neuroinflammation after ischemic stroke. Proc Natl Acad Sci U S A. 2019;116(12):5558-5563. doi: 10.1073/pnas.1814394116

 

  1. Li HQ, Xia SN, Xu SY, et al. γ-Glutamylcysteine alleviates ischemic stroke-induced neuronal apoptosis by inhibiting ROS-mediated endoplasmic reticulum stress. Oxid Med Cell Longev. 2021;2021:2961079. doi: 10.1155/2021/2961079

 

  1. Xu SY, Jia JQ, Sun M, et al. QHRD106 ameliorates ischemic stroke injury as a long-acting tissue kallikrein preparation. iScience. 2023;26(7):107268. doi: 10.1016/j.isci.2023.107268

 

  1. Fan L, Zhang CJ, Zhu L, et al. FasL-PDPK1 pathway promotes the cytotoxicity of CD8+ T cells during ischemic stroke. Transl Stroke Res. 2020;11(4):747-761. doi: 10.1007/s12975-019-00749-0

 

  1. Li Q, Bo L, Li P, Fang B, Meng X. Hypoxic adipose stem cellderived exosomes carrying high-abundant USP22 facilitate cutaneous wound healing through stabilizing HIF-1α and upregulating lncRNA H19. FASEB J. 2024;38(10):e23653. doi: 10.1096/fj.202301403RR

 

  1. Li D, Wang Y, Jin X, et al. NK cell-derived exosomes carry miR-207 and alleviate depression-like symptoms in mice. J Neuroinflammation. 2020;17(1):126. doi: 10.1186/s12974-020-01787-4

 

  1. Sun Z, Shi K, Yang S, et al. Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer. 2018;17(1):147. doi: 10.1186/s12943-018-0897-7

 

  1. Wang ZG, He ZY, Liang S, Yang Q, Cheng P, Chen AM. Comprehensive proteomic analysis of exosomes derived from human bone marrow, adipose tissue, and umbilical cord mesenchymal stem cells. Stem Cell Res Ther. 2020;11(1):511. doi: 10.1186/s13287-020-02032-8

 

  1. Dong C, Chen M, Cai B, Zhang C, Xiao G, Luo W. Mesenchymal stem cell-derived exosomes improved cerebral infarction via transferring miR-23a-3p to activate microglia. Neuromolecular Med. 2022;24(3):290-298. doi: 10.1007/s12017-021-08686-8

 

  1. Juliet VS, Aditya N, Christina CR, et al. Identification of state-specific proteomic and transcriptomic signatures of microglia-derived extracellular vesicles. Mol Cell Proteomics. 2023;22(12):100678. doi: 10.1016/j.mcpro.2023.100678

 

  1. Luan W, Li M, Wu C, Shen X, Sun Z. Proteomic dissimilarities of primary microglia and BV2 cells under stimuli. Eur J Neurosci. 2022;55(7):1709-1723. doi: 10.1111/ejn.15637

 

  1. Weber B, Sturm R, Henrich D, et al. Diagnostic and prognostic potential of exosomal cytokines IL-6 and IL-10 in polytrauma patients. Int J Mol Sci. 2023;24(14):11830. doi: 10.3390/ijms241411830

 

  1. Yu J, Zhu H, Taheri S, et al. Serum amyloid A-mediated inflammasome activation of microglial cells in cerebral ischemia. J Neurosci. 2019;39(47):9465-9476. doi: 10.1523/JNEUROSCI.0801-19.2019

 

  1. Feng H, Zhou W, Yang Y, et al. Serum amyloid A aggravates endotoxin-induced ocular inflammation through the regulation of retinal microglial activation. FASEB J. 2024;38(1):e23389. doi: 10.1096/fj.202301150RRR

 

  1. Liu PY, Li HQ, Dong MQ, et al. Infiltrating myeloid cell-derived properdin markedly promotes microgliamediated neuroinflammation after ischemic stroke. J Neuroinflammation. 2023;20(1):260. doi: 10.1186/s12974-023-02946-z

 

  1. Gu X, Dong M, Xia S, et al. γ-Glutamylcysteine ameliorates blood-brain barrier permeability and neutrophil extracellular traps formation after ischemic stroke by modulating Wnt/β-catenin signalling in mice. Eur J Pharmacol. 2024;969:176409. doi: 10.1016/j.ejphar.2024.176409

 

  1. Gao K, Zhu W, Li H, et al. Association between cytokines and exosomes in synovial fluid of individuals with knee osteoarthritis. Mod Rheumatol. 2020;30(4):758-764. doi: 10.1080/14397595.2019.1651445

 

  1. Ye L, Shu S, Jia J, et al. Absent in melanoma 2 mediates aging-related cognitive dysfunction by acting on complement-dependent microglial phagocytosis. Aging Cell. 2023;22(7):e13860. doi: 10.1111/acel.13860

 

  1. Qian Y, Yang L, Chen J, et al. SRGN amplifies microgliamediated neuroinflammation and exacerbates ischemic brain injury. J Neuroinflammation. 2024;21(1):35. doi: 10.1186/s12974-024-03026-6

 

  1. De Schepper S, Ge JZ, Crowley G, et al. Perivascular cells induce microglial phagocytic states and synaptic engulfment via SPP1 in mouse models of Alzheimer’s disease. Nat Neurosci. 2023;26(3):406-415. doi: 10.1038/s41593-023-01257-z

 

  1. Min XL, Jia WJ, Guo L, et al. Brain microvascular endothelial cell-derived exosomes transmitting circ_0000495 promote microglial M1-polarization and endothelial cell injury under hypoxia condition. FASEB J. 2024;38(2):e23387. doi: 10.1096/fj.202301637R

 

  1. Li Z, Chen Z, Peng J. Neural stem cell-derived exosomal FTO protects neuron from microglial inflammatory injury by inhibiting microglia NRF2 mRNA m6A modification. J Neurogenet. 2023;37(3):103-114.doi: 10.1080/01677063.2023.2259995

 

  1. Yi F, Xiao H, Song M, et al. BMSC-derived exosomal miR-148b-3p attenuates OGD/R-induced HMC3 cell activation by targeting DLL4 and Notch1. Neurosci Res. 2024;199:36-47. doi: 10.1016/j.neures.2023.09.005

 

Share
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Print ISSN: 3060-8589, Published by AccScience Publishing