AccScience Publishing / AJWEP / Online First / DOI: 10.36922/AJWEP025440336
REVIEW ARTICLE

Recent advances in simultaneous saline wastewater treatment and methane storage: A review

Yalong Ding1* Shihan Zhang1 Yang Li1 Guoyu Wang1 Yuyang Tao1 Tongtong Wang1 Ziteng He1 Ruzhu Chen1
Show Less
1 Department of Energy Chemical Engineering, College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, Henan, China
Received: 27 October 2025 | Revised: 22 November 2025 | Accepted: 8 December 2025 | Published online: 15 January 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Water recovery and reuse are crucial strategies for addressing water scarcity and environmental pollution. Conventional wastewater treatment relies on pollutant removal or degradation; however, it often involves complex unit operations and high energy demand, with limited water recovery. Leveraging the unique structure and physicochemical properties of hydrate crystals, hydrate-based water treatment technologies enable direct extraction and reuse of water molecules through solid-liquid phase transitions, garnering increasing attention. Concurrently, hydrate-based methane storage offers distinctive advantages, including elevated storage capacity, moderate storage and transportation conditions, straightforward release mechanisms, and cost-effectiveness. Building upon this foundation, a dual-purpose strategy emerged, utilizing methane gas to form hydrates with water molecules in saline wastewater. Simple solid-liquid separation then isolates the hydrates from the wastewater. The subsequent decomposition of methane hydrates yields methane gas and pure water, achieving both water purification and recovery, as well as methane storage and release. The nucleation and growth process of hydrates, the exclusion of pollutants via crystal phase transitions, the slow growth kinetics of hydrates, and the difficulties associated with separating solids from liquids after formation have all limited the use of hydrate methods in wastewater treatment. This article provides a comprehensive overview of the application of the hydrate method in gas storage and treatment of saline wastewater, including the utilization of pure methane hydrates, thermodynamic and kinetic promoters, and the key role of porous media in the formation and decomposition of methane hydrates. This review offers valuable insights for practitioners engaged in methane storage and saline wastewater treatment.

Keywords
Saline wastewater
Hydrate
Methane storage
Promoter
Gas storage capacity
Funding
This work was funded by the Key Projects of Universities in Henan Province (21B530004), Key Research and Development and Promotion Projects in Henan Province (212102311152, 232102240043, and 222102320377), and Postgraduate Education Reform and Quality Improvement Project of Henan Province (YJS2023JD51).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Mazarji M, Mahmoodi NM, Nabi Bidhendi G, et al. Synthesis, characterization, and enhanced photocatalytic dye degradation: Optimizing graphene-based ZnO-CdSe nanocomposites via response surface methodology. J Alloy Compd. 2025;1010:177999. doi: 10.1016/j.jallcom.2024.177999

 

  1. Niu P, Du J, Xu N, et al. P-KTFNet: A prior knowledge enhanced time-frequency forecasting model for natural gas consumption. Energy. 2025;328:136559. doi: 10.1016/j.energy.2025.136559

 

  1. Li H, Duan H, Song Y, Wang X. A novel conformable fractional logistic grey model and its application to natural gas and electricity consumption in China. Renewable Energy. 2025;243:122591. doi: 10.1016/j.renene.2025.122591

 

  1. He X, Wallington TJ, Anderson JE, et al. Life-cycle greenhouse gas emission benefits of natural gas vehicles. ACS Sustainable Chem Eng. 2021;9(23):7813-7823. doi: 10.1021/acssuschemeng.1c01324

 

  1. Chen Z, Farhadian A, Sadeh E, Chen C. Micellization effects in surfactant-enhanced gas hydrate formation for efficient solidified methane storage. Energy. 2025;332:137008. doi: 10.1016/j.energy.2025.137088

 

  1. Memetova A, Tyagi I, Karri RR, et al. Porous carbon-based material as a sustainable alternative for the storage of natural gas (methane) and biogas (biomethane): A review. Chem Eng J. 2022;446:137373. doi: 10.1016/j.cej.2022.137373

 

  1. Mason JA, Veenstra M, Long JR. Evaluating metal-organic frameworks for natural gas storage. Chem Sci. 2014;5(1):32-51. doi: 10.1039/c3sc52633j

 

  1. Connolly BM, Aragones-Anglada M, Gandara-Loe J, et al. Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage. Nat Commun. 2019;10(1):2345. doi: 10.1038/s41467-019-10185-1

 

  1. Zhang YF, Zhang ZH, Ritter L, et al. New reticular chemistry of the rod secondary building unit: Synthesis, structure, and natural gas storage of a series of three-way rod amide-functionalized metal-organic frameworks. J Am Chem Soc. 2021;143(31):12202-12211. doi: 10.1021/jacs.1c04946

 

  1. Kinnari K, Hundseid J, Li X, Askvik KM. Hydrate management in practice. J Chem Eng Data. 2014;60(2):437-446. doi: 10.1021/je500783u

 

  1. Farhadian A, Phan A, Taheri Rizi Z, et al. Green chemistry advancement in methane storage: A biodegradable surfactant for improved gas hydrate formation and sustainability. Green Chem. 2025;27(17):4523-4539. doi: 10.1039/d5gc00027k

 

  1. Li XS, Xu CG, Zhang Y, Ruan XK, Li G, Wang Y. Investigation into gas production from natural gas hydrate: A review. Appl Energy. 2016;172:286-322. doi: 10.1016/j.apenergy.2016.03.101

 

  1. Englezos P. Clathrate hydrates. Ind Eng Chem Res. 1993;32:1251-1274. doi: 10.1021/ie00019a001

 

  1. Xie Y, Li G, Liu D, et al. Experimental study on a small scale of gas hydrate cold storage apparatus. Appl Energy. 2010;87(11):3340-3346. doi: 10.1016/j.apenergy.2010.05.028

 

  1. Wang X, Dennis M. An experimental study on the formation behavior of single and binary hydrates of TBAB, TBAF and TBPB for cold storage air conditioning applications. Chem Eng Sci. 2015;137:938-946. doi: 10.1016/j.ces.2015.07.042

 

  1. Li XS, Xu CG, Chen ZY, Wu HJ. Hydrate-based pre-combustion carbon dioxide capture process in the system with tetra-n-butyl ammonium bromide solution in the presence of cyclopentane. Energy. 2011;36(3):1394-1403. doi: 10.1016/j.energy.2011.01.034

 

  1. Li Q, Fan S, Wang Y, Lang X, Chen J. CO2 removal from biogas based on hydrate formation with tetra-n-butylammonium bromide solution in the presence of 1-butyl-3-methylimidazolium tetrafluoroborate. Energy Fuels. 2015;29(5):3143-3148. doi: 10.1021/acs.energyfuels.5b00061

 

  1. Sun Q, Guo X, Liu A, et al. Experiment on the separation of air-mixed coal bed methane in THF solution by hydrate formation. Energy Fuels. 2012;26(7):4507-4513. doi: 10.1021/ef300330b

 

  1. Li XS, Cai J, Chen ZY, Xu CG. Hydrate-based methane separation from the drainage coal-bed methane with tetrahydrofuran solution in the presence of sodium dodecyl sulfate. Energy Fuels. 2012;26(2):1144-1151. doi: 10.1021/ef201804d

 

  1. Lee H, Lee JW, Kim DY, et al. Tuning clathrate hydrates for hydrogen storage. Nature. 2005;434:743-746. doi: 10.1038/nature03457

 

  1. Mao WL, Mao HK, Goncharov AF, et al. Hydrogen clusters in clathrate hydrate. Science. 2002;297(5590):2247-2249. doi: 10.1126/science.1075394

 

  1. Lang X, Fan S, Wang Y. Intensification of methane and hydrogen storage in clathrate hydrate and future prospect. J Nat Gas Chem. 2010;19(3):203-209. doi: 10.1016/s1003-9953(09)60079-7

 

  1. Wang W, Ma C, Lin P, Sun L, Cooper AI. Gas storage in renewable bioclathrates. Energy Environ Sci. 2013;6(1):105-107. doi: 10.1039/c2ee23565j

 

  1. Du R, Fu Y, Zhang L, Zhao J, Song Y, Ling Z. Desalination of high-salt brine via carbon materials promoted cyclopentane hydrate formation. Desalination. 2022;534:115785. doi: 10.1016/j.desal.2022.115785

 

  1. Kang KC, Linga P, Park KN, Choi SJ, Lee JD. Seawater desalination by gas hydrate process and removal characteristics of dissolved ions (Na+, K+, Mg2+, Ca2+, B3+, Cl−, SO42−). Desalination. 2014;353:84-90. doi: 10.1016/j.desal.2014.09.007

 

  1. Ma W, Li L, Lin Y, Wang F. Management of formation hinetics and energy storage capacity of methane hydrates via Ag-modified graphene aerogel. Energy Fuels. 2025;39(23):10980-10989. doi: 10.1021/acs.energyfuels.5c00762

 

  1. Yang L, Zhang C, Hu H, Liu N, Xie Y, Liu D. Accelerated clathrate hydrate formation with water-saturated porous sawdust for efficient methane storage. Fuel. 2026;404:136213. doi: 10.1016/j.fuel.2025.136213

 

  1. Veluswamy HP, Wong AJH, Babu P, et al. Rapid methane hydrate formation to develop a cost effective large scale energy storage system. Chem Eng J. 2016;290:161-173. doi: 10.1016/j.cej.2016.01.026

 

  1. Zhang Y, Ma Y, Jeenmuang K, et al. Rapid conversion of amino acid modified-ice to methane hydrate for sustainable energy storage. Nat Commun. 2025;16(1):8670. doi: 10.1038/s41467-025-63699-2

 

  1. Sloan ED. Fundamental principles and applications of natural gas hydrates. Nature. 2003;426:353-363. doi: 10.1038/nature02135

 

  1. Sloan ED. Clathrate Hydrates of Natural Gases. 2nd ed. New York, NY: Marcel Dekker; 1998. doi: 10.1021/ef000056e

 

  1. Parker A. Potable water from sea-water. Nature. 1942;149:184-186. doi: 10.1038/149184a0

 

  1. Hassanpouryouzband A, Joonaki E, Vasheghani Farahani M, et al. Gas hydrates in sustainable chemistry. Chem Soc Rev. 2020;49(15):5225-5309. doi: 10.1039/c8cs00989a

 

  1. Babu P, Kumar R, Linga P. Unusual behavior of propane as a co-guest during hydrate formation in silica sand: Potential application to seawater desalination and carbon dioxide capture. Chem Eng Sci. 2014;117:342-351. doi: 10.1016/j.ces.2014.06.044

 

  1. Zheng J, Cheng F, Li Y, Lü X, Yang M. Progress and trends in hydrate based desalination (HBD) technology: A review. Chin J Chem Eng. 2019;27(9):2037-2043. doi: 10.1016/j.cjche.2019.02.017

 

  1. Montazeri SM, Kolliopoulos G. Hydrate based desalination for sustainable water treatment: A review. Desalination. 2022;537:115855.doi: 10.1016/j.desal.2022.115855

 

  1. Dong H, Zhang L, Ling Z, Zhao J, Song Y. The controlling factors and ion exclusion mechanism of hydrate-based pollutant removal. ACS Sustain Chem Eng. 2019;7(8):7932-7940. doi: 10.1021/acssuschemeng.9b00651

 

  1. Truong-Lam HS, Seo SD, Jeon C, Lee GP, Lee JD. A gas hydrate process for high-salinity water and wastewater purification. Desalination. 2022;529:115651. doi: 10.1016/j.desal.2022.115651

 

  1. Geo Lim S, Yeop Oh C, Lee JW, et al. Sustainable freshwater recovery from radioactive wastewater by gas hydrate formation. Chem Eng J. 2023;461:141830. doi: 10.1016/j.cej.2023.141830

 

  1. Wu B, Horvat K, Mahajan D, Chai X, Yang D, Dai X. Free-conditioning dewatering of sewage sludge through in situ propane hydrate formation. Water Res. 2018;145:464-472. doi: 10.1016/j.watres.2018.08.057

 

  1. Wu B, Li H, Zhou K, et al. Crystallization-driven evolution of water occurrence states with implications on dewaterability improvement of waste-activated sludge. Water Res. 2023;244:120496. doi: 10.1016/j.watres.2023.120496

 

  1. Cha M, Hu Y, Sum AK. Methane hydrate phase equilibria for systems containing NaCl, KCl, and NH4Cl. Fluid Phase Equilibria. 2016;413:2-9. doi: 10.1016/j.fluid.2015.08.010

 

  1. Hu Y, Lee KH, Lee BR, Sum AK. Gas hydrate formation from high concentration KCl brines at ultra-high pressures. J Ind Eng Chem. 2017;50:142-146. doi: 10.1016/j.jiec.2017.02.007

 

  1. Hu Y, Makogon TY, Karanjkar P, Lee KH, Lee BR, Sum AK. Gas hydrates phase equilibria and formation from high concentration NaCl brines up to 200 MPa. J Chem Eng Data. 2017;62(6):1910-1918. doi: 10.1021/acs.jced.7b00292

 

  1. Hu Y, Makogon TY, Karanjkar P, Lee KH, Lee BR, Sum AK. Gas hydrates phase equilibria for structure I and II hydrates with chloride salts at high salt concentrations and up to 200 MPa. J Chem Thermodyn. 2018;117:27-32. doi: 10.1016/j.jct.2017.06.007

 

  1. Cha JH, Seol Y. Increasing gas hydrate formation temperature for desalination of high salinity produced water with secondary guests. ACS Sustain Chem Eng. 2013;1(10):1218-1224. doi: 10.1021/sc400160u

 

  1. Fakharian H, Ganji H, Naderifar A. Desalination of high salinity produced water using natural gas hydrate. J Taiwan Inst Chem E. 2017;72:157-162. doi: 10.1016/j.jtice.2017.01.025

 

  1. Seo SD, Hong SY, Sum AK, Lee KH, Lee JD, Lee BR. Thermodynamic and kinetic analysis of gas hydrates for desalination of saturated salinity water. Chem Eng J. 2019;370:980-987. doi: 10.1016/j.cej.2019.03.278

 

  1. Mallek R, Miqueu C, Jacob M, Le Mélinaire P, Dicharry C. Effect of porous activated carbon particles soaked in cyclopentane on CP-hydrate formation in synthetic produced water. J Water Process Eng. 2020;38:101660. doi: 10.1016/j.jwpe.2020.101660

 

  1. Javanmardi J, Moshfeghian M. Energy consumption and economic evaluation of water desalination by hydrate phenomenon. App Therm Eng. 2003;23(7):845-857. doi: 10.1016/s1359-4311(03)00023-1

 

  1. Choi JK, Paudel A, Sapkota S, et al. Comparative assessment of conventional and emerging desalination technologies: A holistic review for sustainable water solutions. Desalination. 2025;614:119140. doi: 10.1016/j.desal.2025.119140

 

  1. Khokhar AA, Gudmundsson JS, Sloan ED. Gas storage in structure H hydrates. Fluid Phase Equilibr.1998;150-151:383-392. doi: 10.1016/S0378-3812(98)00338-0

 

  1. Stern LA, Circone S, Kirby SH, Durham WB. Anomalous preservation of pure methane hydrate at 1 atm. J Phys Chem B. 2001;105:1756-1762. doi: 10.1021/jp003061s

 

  1. Takeya S, Ripmeester JA. Dissociation behavior of clathrate hydrates to ice and dependence on guest molecules. Angew Chem Int Ed Engl. 2008;47(7):1276-1279. doi: 10.1002/anie.200703718

 

  1. Falenty A, Kuhs WF, Glockzin M, Rehder G. “Self-preservation” of CH4 hydrates for gas transport technology: Pressure-temperature dependence andice microstructures. Energy Fuels. 2014;28(10):6275-6283. doi: 10.1021/ef501409g

 

  1. Mimachi H, Takahashi M, Takeya S, et al. Effect of long-term storage and thermal history on the gas content of natural gas hydrate pellets under ambient pressure. Energy Fuels. 2015;29(8):4827-4834. doi: 10.1021/acs.energyfuels.5b00832

 

  1. Takeya S, Mimachi H, Murayama T. Methane storage in water frameworks: Self-preservation of methane hydrate pellets formed from NaCl solutions. Appl Energy. 2018;230:86-93. doi: 10.1016/j.apenergy.2018.08.015

 

  1. Takeya S, Shimada W, Kamata Y, et al. In situ X-ray diffraction measurements of the self-preservation effect of CH4 hydrate. J Phys Chem A. 2001;105:9756-9759. doi: 10.1021/jp011435r

 

  1. Zhang X, Huang T, Shan T, et al. Molecular dynamics study of the influence of water molecular phase state on the replacement of CO2-CH4 hydrate in porous media. J Mol Liq. 2023;391:123401. doi: 10.1016/j.molliq.2023.123401

 

  1. Belosludov RV, Zhdanov RK, Gets KV, Bozhko YY, Belosludov VR, Kawazoe Y. Role of methane as a second guest component in thermodynamic stability and isomer selectivity of butane clathrate hydrates. J Phys Chem C. 2020;124(34):18474-18481. doi: 10.1021/acs.jpcc.0c05947

 

  1. Shimada W, Takeya S, Kamata Y, et al. Texture change of ice on anomalously preserved methane clathrate hydrate. J Phys Chem B. 2005;109:5802-5807. doi: 10.1021/jp044624t

 

  1. Xiao P, Yang XM, Sun CY, Cui JL, Li N, Chen GJ. Enhancing methane hydrate formation in bulk water using vertical reciprocating impact. Chem Eng J. 2018;336:649-658. doi: 10.1016/j.cej.2017.12.020

 

  1. Rossi F, Filipponi M, Castellani B. Investigation on a novel reactor for gas hydrate production. Appl Energy. 2012;99:167-172. doi: 10.1016/j.apenergy.2012.05.005

 

  1. Wang W, Bray CL, Adams DJ, Cooper AI. Methane storage in dry water gas hydrates. J Am Chem Soc. 2008;130:11608-11609. doi: 10.1021/ja8048173

 

  1. Chen L, Liu H, Lu H, Sun B, Liu M, Ripmeester JA. Advanced measurement of CO2 diffusion in sI and sII clathrate hydrates. Energy Fuels. 2025;39:13545-13551. doi: 10.1021/acs.energyfuels.5c00888

 

  1. Bhawangirkar DR, Liu X, Sun B, Zhao J, Yin Z. Tuning effect of THF on the phase equilibria, storage capacity, and dissociation heat of CO2 hydrates: Implication for hydrate-based CO2 sequestration. Fuel. 2025;396:135293. doi: 10.1016/j.fuel.2025.135293

 

  1. Kodera M, Takeya S, Lassiège M, Alavi S, Ohmura R. Characterization of clathrate hydrate formed in H2+CO2+tetrahydropyran+water system as carbon capture materials. Fuel. 2021;295:120593. doi: 10.1016/j.fuel.2021.120593

 

  1. Lee JC, Lee W, Kang J, et al. Surfactant-stabilized cyclopentane hydrate emulsions for removing tetramethylammonium hydroxide from semiconductor wastewater. Sep Purif Technol. 2026;380:135435. doi: 10.1016/j.seppur.2025.135435

 

  1. Lee W, Kim K, Lee J, et al. Viable hydrate-based CO2 capture facilitated by cyclopentane hydrate seeds and tailored kinetic promoters. Chem Eng J. 2025;520:165846. doi: 10.1016/j.cej.2025.165846

 

  1. Yang K, Han Z, Zhang P. Microscopic insights into the synergic promotion of hydrate formation by tetrabutylammonium bromide and CO2 for gas and energy storage by molecular dynamics. Chem Eng Sci. 2025;317:122081. doi: 10.1016/j.ces.2025.122081

 

  1. Zhang M, Han Z, Song A, et al. Enhancing CO2 capture efficiency of K2CO3 solution with quaternary ammonium additives. J Environ Cheml Eng. 2025;13(5):117545. doi: 10.1016/j.jece.2025.117545

 

  1. Luo YT, Zhu JH, Fan SS, Chen GJ. Study on the kinetics of hydrate formation in a bubble column. Chem Eng Sci. 2007;62(4):1000-1009. doi: 10.1016/j.ces.2006.11.004

 

  1. Ning Z, Zhang S, Zhang Q, Zhen S, Chen G. Experimental and modeling study of kinetics for methane hydrate formation with tetrahydrofuran as promoter. Petrol Sci. 2007;4:61-65. doi: 10.1007/BF03186575

 

  1. Shimada W, Shiro M, Kondo H, et al. Tetra-n-butylammonium bromide-water (1/38). Acta Crystallogr C. 2005;61(Pt 2):o65-o66. doi: 10.1107/S0108270104032743

 

  1. Yang L, Fan SS, Lang XM, Wang YH, Bi DD. Component of clathrate hydrates formed in CH4-TBAB-H2O system. Adv Mater Res. 2011;383-390:2883-2888. doi: 10.4028/www.scientific.net/AMR.383-390.2883

 

  1. Liu H, Zhan S, Li R, et al. High-efficiency natural-gas storage method involving formation of gas hydrate in water/oil-cyclopentane emulsion. Chem Eng J. 2020;400:125369. doi: 10.1016/j.cej.2020.125369

 

  1. Xu CG, Yu YS, Ding YL, Cai J, Li XS. The effect of hydrate promoters on gas uptake. Phys Chem Chem Phys. 2017;19(32):21769-21776. doi: 10.1039/c7cp02173a

 

  1. Veluswamy HP, Kumar S, Kumar R, Rangsunvigit P, Linga P. Enhanced clathrate hydrate formation kinetics at near ambient temperatures and moderate pressures: Application to natural gas storage. Fuel. 2016;182:907-919. doi: 10.1016/j.fuel.2016.05.068

 

  1. Kumar A, Veluswamy HP, Kumar R, Linga P. Direct use of seawater for rapid methane storage via clathrate (sII) hydrates. Appl Energy. 2019;235:21-30. doi: 10.1016/j.apenergy.2018.10.085

 

  1. Park KH, Kim DH, Cha M. Spectroscopic observations of host-guest interactions occurring in (cyclobutanemethanol+methane) hydrate and their potential application to gas storage. Chem Eng J. 2021;421:127835. doi: 10.1016/j.cej.2020.127835

 

  1. Seol J. Incorporating nitroalkane promoters in methane hydrates for stability and energy density. Energy Fuels. 2022;36(19):11972-11978. doi: 10.1021/acs.energyfuels.2c02496

 

  1. Seol J. Structural and thermodynamic investigations of nitroalkane+CH4 hydrates with structures II and H. J Chem Eng Data. 2023;68(6):1441-1446. doi: 10.1021/acs.jced.3c00072

 

  1. Karaaslan U, Parlaktuna M. Surfactants as hydrate promoters? Energy Fuels. 2000;14:1103-1107. doi: 10.1021/ef000069s

 

  1. Liu Y, Chen Z, Chen C, et al. Metal nanoparticle-enhanced gas hydrate growth with sodium dodecyl sulfate: A microscopic simulation study. Cryst Growth Des. 2025;25:10281-10297. doi: 10.1021/acs.cgd.5c00445

 

  1. Liu Z, Li Y, Wang W, et al. Experimental investigation on the micro-morphologies and growing process of methane hydrate formation in SDS solution. Fuel. 2021;293:120320. doi: 10.1016/j.fuel.2021.120320

 

  1. Zhong Y, Rogers RE. Surfactant effects on gas hydrate formation. Chem Eng Sci. 2000;55:4175-4187. doi: 10.1016/s0009-2509(00)00072-5

 

  1. Link DD, Ladner EP, Elsen HA, Taylor CE. Formation and dissociation studies for optimizing the uptake of methane by methane hydrates. Fluid Phase Equilibria. 2003;211(1):1-10. doi: 10.1016/s0378-3812(03)00153-5

 

  1. Lin W, Chen GJ, Sun CY, et al. Effect of surfactant on the formation and dissociation kinetic behavior of methane hydrate. Chem Eng Sci. 2004;59(21):4449-4455. doi: 10.1016/j.ces.2004.07.010

 

  1. Liu Y, Chen B, Chen Y, et al. Methane storage in a hydrated form as promoted by leucines for possible application to natural gas transportation and storage. Energy Technol. 2015;3(8):815-819. doi: 10.1002/ente.201500048

 

  1. Veluswamy HP, Kumar A, Kumar R, Linga P. An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application. Appl Energy. 2017;188:190-199. doi: 10.1016/j.apenergy.2016.12.002

 

  1. Veluswamy HP, Hong QW, Linga P. Morphology study of methane hydrate formation and dissociation in the presence of amino acid. Cryst Growth Des. 2016;16(10):5932-5945. doi: 10.1021/acs.cgd.6b00997

 

  1. Sagidullin A, Skiba S, Adamova T, et al. Humic acids as a new type of methane hydrate formation promoter and a possible mechanism for the hydrate growth enhancement. ACS Sustainable Chem Eng. 2021;10(1):521-529. doi: 10.1021/acssuschemeng.1c07024

 

  1. Baek S, Ahn YH, Zhang J, Min J, Lee H, Lee JW. Enhanced methane hydrate formation with cyclopentane hydrate seeds. Appl Energy. 2017;202:32-41. doi: 10.1016/j.apenergy.2017.05.108

 

  1. Sun Q, Chen B, Li X, Guo X, Yang L. The investigation of phase equilibria and kinetics of CH4 hydrate in the presence of bio-additives. Fluid Phase Equilibr. 2017;452:143-147. doi: 10.1016/j.fluid.2017.09.002

 

  1. Shi L, Ding J, Liang D. Enhanced CH4 storage in hydrates with the presence of sucrose stearate. Energy. 2019;180:978-988. doi: 10.1016/j.energy.2019.05.151

 

  1. Li J, Liang D, Guo K, Wang R, Fan S. Formation and dissociation of HFC134a gas hydrate in nano-copper suspension. Energ Convers Manage. 2006;47(2):201-210. doi: 10.1016/j.enconman.2005.03.018

 

  1. Binks BP, Murakami R. Phase inversion of particle-stabilized materials from foams to dry water. Nat Mater. 2006;5(11):865-869. doi: 10.1038/nmat1757

 

  1. Hu G, Ye Y, Liu C, Meng Q, Zhang J, Diao S. Direct measurement of formation and dissociation rate and storage capacity of dry water methane hydrates. Fuel Process Technol. 2011;92(8):1617-1622. doi: 10.1016/j.fuproc.2011.04.008

 

  1. Park J, Shin K, Kim J, et al. Effect of hydrate shell formation on the stability of dry water. J Phys Chem C. 2015;119(4):1690-1699. doi: 10.1021/jp510603q

 

  1. Zhou L, Sun Y, Zhou Y. Enhancement of the methane storage on activated carbon by preadsorbed water. AIChE J. 2002;48:2412-2416. doi: 10.1002/aic.690481030

 

  1. Yan L, Chen G, Pang W, Liu J. Experimental and modeling study on hydrate formation in wet activated carbon. J Phys Chem B. 2005;109:6025-6030. doi: 10.1021/jp045679y

 

  1. Siangsai A, Rangsunvigit P, Kitiyanan B, Kulprathipanja S, Linga P. Investigation on the roles of activated carbon particle sizes on methane hydrate formation and dissociation. Chem Eng Sci. 2015;126:383-389. doi: 10.1016/j.ces.2014.12.047

 

  1. He Z, Zhang K, Jiang J. Formation of CH4 Hydrate in a mesoporous metal-organic framework MIL-101: Mechanistic insights from microsecond molecular dynamics simulations. J Phys Chem Lett. 2019;10(22):7002-7008. doi: 10.1021/acs.jpclett.9b02808

 

  1. Mu L, Liu B, Liu H, Yang Y, Sun C, Chen G. A novel method to improve the gas storage capacity of ZIF-8. J Mater Chem. 2012;22(24):12246-12252. doi: 10.1039/c2jm31541f

 

  1. Park SS, Lee SB, Kim NJ. Effect of multi-walled carbon nanotubes on methane hydrate formation. J Ind Eng Chem. 2010;16(4):551-555. doi: 10.1016/j.jiec.2010.03.023

 

  1. Li DL, Sheng SM, Zhang Y, Liang DQ, Wu XP. Effects of multiwalled carbon nanotubes on CH4 hydrate in the presence of tetra-n-butyl ammonium bromide. RSC Adv. 2018;8(18):10089-10096. doi: 10.1039/c8ra01124a

 

  1. Lim SH, Riffat SB, Park SS, Oh SJ, Chun W, Kim NJ. Enhancement of methane hydrate formation using a mixture of tetrahydrofuran and oxidized multi-wall carbon nanotubes. Int J Energ Res. 2014;38(3):374-379. doi: 10.1002/er.3051

 

  1. Nashed O, Lal B, Partoon B, Sabil KM, Hamed Y. Kinematic study of methane hydrate formation and self-preservation in the presence of functionalized carbon nanotubes. Energy Fuels. 2019;33(8):7684-7695. doi: 10.1021/acs.energyfuels.9b01531

 

  1. Deng Z, Wang Y, Yu C, et al. Promoting methane hydrate formation with expanded graphite additives: Application to solidified natural gas storage. Fuel. 2021;299:120867. doi: 10.1016/j.fuel.2021.120867

 

  1. Zang X, Du J, Liang D, Fan S, Tang C. Influence of A-type zeolite on methane hydrate formation. Chin J Chem Eng. 2009;17:854-859. doi: 10.1016/s1004-9541(08)60287-6

 

  1. Kim NJ, Park SS, Shin SW, Hyun JH, Chun W. An experimental investigation into the effects of zeolites on the formation of methane hydrates. Int J Energ Res. 2015;39(1):26-32. doi: 10.1002/er.3201

 

  1. Zhao Y, Zhao J, Liang W, Gao Q, Yang D. Semi-clathrate hydrate process of methane in porous media-microporous materials of 5A-type zeolites. Fuel. 2018;220:185-191. doi: 10.1016/j.fuel.2018.01.067

 

  1. Cuadrado-Collados C, Mouchaham G, Daemen L, et al. Quest for an optimal methane hydrate formation in the pores of hydrolytically stable metal-organic frameworks. J Am Chem Soc. 2020;142(31):13391-13397. doi: 10.1021/jacs.0c01459
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing