Valorization of olive mill wastewater through irrigation trials of Triticum durum seeds using the dilution approach
Olive mill wastewater (OMW) generated by industrial extraction units in olive oil mills is a significant source of pollution for the ecosystem. This pollution manifests through inhibited soil microbial activity and reduced plant germination rates due to high acidity, excessive salinity, and the presence of heavy metals. This study aimed to enhance the value of these effluents by restoring soil microbial activity and promoting plant germination through a series of increasing dilutions to determine the optimal dose. This dilution process effectively neutralized the pH and rebalanced the microbial load, facilitating the reappearance of various bacterial species, such as fecal coliforms, total coliforms, Escherichia coli, and Staphylococcus. This resurgence significantly contributed to improved soil fertility. Furthermore, at a 10/100 dilution ratio, wheat seed germination reached 98%, with seedling growth reaching 18 cm – observations comparable to the control batch. These results demonstrate the effectiveness of this dilution strategy in mitigating the negative effects of OMW on agricultural soils.
- Xu M, Cui Y, Beiyuan J, Wang X, Duan C, Fang L. Heavy metal pollution increases soil microbial carbon limitation: Evidence from ecological enzyme stoichiometry. Soil Ecol Lett. 2021;3(3):230-241. doi: 10.1007/s42832-021-0094-2
- Stuczynski TI, McCarty GW, Siebielec G. Response of soil microbiological activities to cadmium, lead, and zinc salt amendments. J Environ Qual. 2003;32(4):1346-1355. doi: 10.2134/jeq2003.1346
- Xiao XY, Wang MW, Zhu HW, Guo ZH, Han XQ, Zeng P. Response of soil microbial activities and microbial community structure to vanadium stress. Ecotoxic Environ Safe. 2017;142:200-206. doi: 10.1016/j.ecoenv.2017.03.047
- Tang J, Zhang J, Ren L, et al. Diagnosis of soil contamination using microbiological indices: A review on heavy metal pollution. J Environ Manag. 2019;242:121-130. doi: 10.1016/j.jenvman.2019.04.061
- Yang J, Yang F, Yang Y, et al. A proposal of a bioindicator of central enzyme in areas of long-term Pb-Zn contamination based on the analysis of surface soil properties. Environ Pollut. 2016;213:760-769. doi: 10.1016/j.envpol.2016.03.030
- Mierzwa-Hersztek M, Gondek K, Klimkowicz-Pawlas A, Baran A, Bajda T. Sewage sludge biochars management-ecotoxicity, mobility of heavy metals, and soil microbial biomass. Environ Toxicol Chem. 2018;37(4):1197-1207. doi: 10.1002/etc.4045
- Lin Y, Ye Y, Hu Y, Shi H. The variation in microbial community structure under different heavy metal contamination levels in paddy soilsils. Ecotoxic Environ Safe. 2019;180:557-564. doi: 10.1016/j.ecoenv.2019.05.057
- Rodier J, Legube B, Merlet N, et al. Water Analysis, Natural Waters, Waste Waters, Sea Water, Chemistry, Physical Chemistry, Microbiology, Biology, Interpretation of Results. 9th ed. Paris: Dunod; 2009.
- Annabi M, Bissonnais Y, Villio-Poitrenaud M, Houot S. Improvement of soil aggregate stability by repeated applications of organic amendments to a cultivated silty loam soil. Agri Ecosyst Environ. 2011;144(1):382-389. doi: 10.1016/j.agee.2011.07.005
- El-Naggar A, Lee SS, Rinklebe J, et al. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma. 2019;337:536-554. doi: 10.1016/j.geoderma.2018.09.034
- Oliveira A, Pampulha ME. Effects of long-term heavy metal contamination on soil microbial characteristics. J Biosci Bioeng. 2006;102(3):157-161. doi: 10.1263/jbb.102.157
- Nabulo G, Young SD, Black CR. Assessing risk to human health from tropical leafy vegetables grown on contaminated urban soils. Sci Total Environ. 2010;408(22):5338-5351. doi: 10.1016/j.scitotenv.2010.06.034
- Antoniadis V, Levizou E, Shaheen SM, et al. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation-a review. Earth Sci Rev. 2017;171:621-645. doi: 10.1016/j.earscirev.2017.06.005
- Beiyuan J, Fang L, Chen H, Li M, Liu D, Wang Y. Nitrogen of EDDS enhanced removal of potentially toxic elements and attenuated their oxidative stress in a phytoextraction process. Environ Pollut. 2021;268(Part A):115-719.doi: 10.1016/j.envpol.2020.115719
- Schachtman DP, Kumar R, Schroeder JI, Marsh EL. Molecular and functional characterization of a novel low-affinity cation transporter (LCT1) in higher plants. Proc Natl Acad Sci U S A. 1997;94(20):11079-11084. doi: 10.1073/pnas.94.20.11079
- Himmelbauer ML, Puschenreiter M, Schnepf A, Loiskandl W, Wenzel WW. Root morphology of Thlaspi goesingense Hálácsy grown on a serpentine soil. J Plant Nutr Soil Sci. 2005;168(1):138-144. doi: 10.1002/jpln.200420434
- Garg N, Singla P. Arsenic toxicity in cultivated plants: Physiological effects and tolerance mechanisms. Environ Chem Lett. 2011;9:303-321. doi: 10.1007/s10311-011-0313-7
- Smith SE, Christophersen HM, Pope S. Arsenic uptake and toxicity in plants: Integrating mycorrhizal influences. Plan Soil. 2010;327:1-21. doi: 10.1007/s11104-009-0089-8
- Tripathi RD, Srivastava S, Mishra S, et al. Arsenic Hazards: Strategies for tolerance and remediation by plants. Trends Biotechnol. 2007;25(4):158-165. doi: 10.1016/j.tibtech.2007.02.003
- Bielińska EJ, Mocek-Płóciniak A. Biochemical and chemical indices of soil transformations on goose farms in the years 1996-2011. Arch Environ Prot. 2015;41(1):80-85. doi: 10.1515/aep-2015-0010
- Yasmin R, Zafar MS, Tahir IM, Asif R, Asghar S, Raza SK. Biosorptive potential of Pseudomonas species RY12 toward zinc heavy metal in agriculture soil irrigated with contaminated waste water. Dose Response. 2022;20(3):15593258221117352. doi: 10.1177/15593258221117352
- Arora PK. Bacilli-mediated degradation of xenobiotic compounds and heavy metals. Front Bioeng Biotechnol. 2020;8:570307. doi: 10.3389/fbioe.2020.570307
- Uridia RZ, Kavtaradze, NA, Kochiashvili KN, et al. Bioremediation of soils contaminated with heavy metals. Inter Acad J Web Sch. 2021;2(52). doi: 10.31435/rsglobal_wos/30062021/7618
- Gong S, Wang H, Lou F, Qin R, Fu T. Calcareous materials effectively reduce the accumulation of cd in potatoes in acidic cadmium-contaminated farmland soils in mining areas. Inter J Environ Res Public Health. 2022;19(18):11736. doi: 10.3390/ijerph191811736
- Oladele EO, John T, Odeigah P, Taiwo IA. The influence of Pb and Zn contaminated soil on the germination and growth of Bambara Nut (Vigna subterranea). J Appl Sci Environ Manag. 2017;21(4):761-768. doi: 10.4314/jasem.v21i4.17
- Wang L, Zhou F, Zhou J, et al. Genomic analysis of Pseudomonas asiatica JP233: An efficient phosphate-solubilizing bacterium. Genes (Basel). 2022;13(12):22-90. doi: 10.3390/genes13122290
- Patel JK, Agrawal R, Sidhdhapara R. Bacterial endophytes associated with the roots of Poaceae plants: Identification, characterization, and promotion of plant growth. J Microb Biotechnol Food Sci. 2020;10(3):478-483. doi: 10.15414/jmbfs.2020.10.3.478-483
- Kalu CM, Ogola HJO, Selvarajan R, Tekere M, Ntushelo K. Fungal diversity and metabolome of the rhizosphere and endosphere of Phragmites australis in an environment contaminated by AMD. Heliyon. 2021;7(3):E06399. doi: 10.1016/j.heliyon.2021.e06399
- Wang X, Cui Y, Zhang X, et al. A novel extracellular enzyme stoichiometry method to evaluate soil heavy metal contamination: Evidence derived from microbial metabolic limitation. Sci Total Environ. 2020;738:139709. doi: 10.1016/j.scitotenv.2020.139709
- Li C, Zhou K, Qin W, et al. A review on heavy metals contamination in soil: Effects, sources, and remediation techniques. Soil Sediment Contam Int J. 2019;28(4):380-394. doi: 10.1080/15320383.2019.1592108
- Seraj F, Rahman T. Heavy metals, metalloids, their toxic effect and living systems. Amer J Plant Sci. 2018;9(13):2626-2643. doi: 10.4236/ajps.2018.913191
