AccScience Publishing / AJWEP / Online First / DOI: 10.36922/AJWEP025380299
ORIGINAL RESEARCH ARTICLE

DNA-intercalation-based selective removal of 1,4,5,8-tetrahydroxy-9,10-anthraquinone in vitro

Rongrong Zhang1 Junsheng Li1* Guoxia Huang1 Liujuan Yan1 Ji Ma1
Show Less
1 Sugar Resources Biomaterials Research Laboratory, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
Received: 20 September 2025 | Revised: 22 October 2025 | Accepted: 29 October 2025 | Published online: 21 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Anthraquinone (AQ) derivatives are persistent environmental pollutants with documented genotoxicity, necessitating efficient methods for their selective removal. This study was therefore designed to characterize the in vitro intercalative interaction between THAQ and DNA, determine the binding affinity and thermodynamics, and evaluate DNA-based removal of THAQ. The interaction characteristics of 1,4,5,8-tetrahydroxy-9,10-anthraquinone (THAQ) with DNA in vitro were investigated through multiple spectroscopic techniques. Results from ultraviolet-visible spectroscopy, fluorescence spectroscopy, circular dichroism, fluorescence microscopy, and resonance light scattering spectroscopy demonstrated the formation of a stable complex via intercalation of THAQ into the base pairs of DNA in vitro. Collectively, these findings indicate an intercalative binding mode between THAQ and free DNA under in vitro conditions. DNA thermal denaturation experiments revealed an 8.40°C increase in the melting temperature upon the addition of THAQ, suggesting enhanced stability of the DNA double helix due to intercalation. Fluorescence microscopy indicated that THAQ was selectively adsorbed onto DNA in a manner analogous to the classical intercalator ethidium bromide. The DNA binding saturation value further confirmed strong intercalative binding, with a value of 4.57 for THAQ, significantly higher than those of its analogs (emodin: 0.53, emodin methyl ether: 0.15, and alizarin: 0.19). Under optimal conditions (35°C), the removal efficiency of THAQ by DNA reached 96.67%, in stark contrast to the 3.78% removal achieved by activated carbon. The binding stoichiometry and binding constant were determined to be 0.9479 and 1.4457 × 104 L/mol, respectively. Adsorption kinetics and thermodynamics revealed that the process followed the pseudo-second-order kinetic model (0.9922 < R2 < 0.9967) and the Langmuir isotherm model, with spontaneous binding (ΔG < 0). This study elucidates the interaction mechanisms between THAQ and DNA in vitro and proposes a novel strategy for THAQ removal based on DNA intercalation.

Keywords
1
4
5
8-Tetrahydroxy-9
10-anthraquinone
Herring sperm DNA
Intercalation
Spectroscopy
Magnetic bead separation
Funding
This work was supported by the National Natural Science Foundation of China (Grant Nos. 22265003 and 21966008).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Sebak M, Molham F, Greco C, Tammam MA, Sobeh M, El-Demerdash A. Chemical diversity, medicinal potentialities, biosynthesis, and pharmacokinetics of anthraquinones and their congeners derived from marine fungi: A comprehensive update. RSC Adv. 2022;12(38):24887-24921. doi: 10.1039/D2RA03610J

 

  1. Wang P, Wei J, Hua X, et al. Plant anthraquinones: Classification, distribution, biosynthesis, and regulation. J Cell Physiol. 2024;239(10):e31339. doi: 10.1002/jcp.31063

 

  1. International Working Group on the Evaluation of Carcinogenic Risks to Humans. Some chemicals present in industrial and consumer products, food and drinking-water. IARC Monogr Eval Carcinog Risks Hum. 2013;101:9-549.

 

  1. Siraj MA, Jacobs AT, Tan GT. Altersolanol B, a fungal tetrahydroanthraquinone, inhibits the proliferation of estrogen receptor-expressing (ER+) human breast adenocarcinoma by modulating PI3K/AKT, p38/ERK MAPK and associated signaling pathways. Chem Biol Interact. 2022;359:109891. doi: 10.1016/j.cbi.2022.109916

 

  1. Li CWY, Walters S, Müller JF, Orlando J, Brasseur GP. Contamination of tea leaves by anthraquinone: The atmosphere as a possible source. Ambio. 2023;52(8):1373-1388. doi: 10.1007/s13280-023-01858-9

 

  1. Sendelbach LE. A review of the toxicity and carcinogenicity of anthraquinone derivatives. Toxicology. 1989;57(3):227-240. doi: 10.1016/0300-483X(89)90113-3

 

  1. Liberman DF, Fink RC, Schaefer FL, Mulcahy RJ, StarkAA. Mutagenicity of anthraquinone and hydroxylated anthraquinones in the Ames/Salmonella microsome system. Appl Environ Microbiol. 1982;43(6):1354-1359. doi: 10.1128/AEM.43.6.1354-1359.1982

 

  1. Chen Z, Yin J, Huang S, Lai K, Peng J, Lai W. Ligand engineering-based high-efficiency photothermal sensors powered sensitive lateral flow immunoassay platform. Anal Chem. 2025;97(36):15389-15398. doi: 10.1021/acs.analchem.5c02864

 

  1. Zhang S, Zhou S, Liu H, Xing M, Ding B, Li B. Pinecone-inspired nanoarchitectured smart microcages enable nano/microparticle drug delivery. Adv Funct Mater. 2020;30(28):2001754. doi: 10.1002/adfm.202002434

 

  1. Aleid SM, Hamad SH, Al-Dalali S. Treatment of antibiotic fermentation effluents using charcoal adsorption. Asian J Water Environ Pollut. 2025. doi: 10.36922/AJWEP025240198

 

  1. Moussavi G, Mahmoudi M. Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. J Hazard Mater. 2009;168(2-3):806-812. doi: 10.1016/j.jhazmat.2009.02.097

 

  1. Wang WK, Zhang YY, Wang AB, Yu ZB, Han MF, Yang YS. Electrochemical performance of 1,4,5,8-tetrahydroxy-9,10-anthraquinone as cathode material in lithium batteries. Acta Phys Chim Sin. 2010;26(1):47-50. doi: 10.3866/PKU.WHXB20100105

 

  1. Mao ZQ, Rha H, Kim J, et al. THQ-xanthene: An emerging strategy to create next-generation NIR-I/II fluorophores. Adv Sci. 2023;10(18):2207702. doi: 10.1002/advs.202301177

 

  1. Malik EM, Müller CE. Anthraquinones as pharmacological tools and drugs. Med Res Rev. 2016;36(4):705-748. doi: 10.1002/med.21391

 

  1. Mueller SO, Stopper H. Characterization of the genotoxicity of anthraquinones in mammalian cells. Biochim Biophys Acta. 1999;1428(2-3):406-414. doi: 10.1016/S0304-4165(99)00064-1

 

  1. Bondy GS, Armstrong CL, Dawson BA, Héroux- Metcalf C, Neville GA, Roger CG. Toxicity of structurally related anthraquinones and anthrones to mammalian cells in vitro. Toxicol In Vitro. 1994;8(3):329-335. doi: 10.1016/0887-2333(94)90153-8

 

  1. Valduga AT, Gonçalves IL, Saorin Puton BM, de Lima Hennig B, de Brito ES. Anthraquinone as emerging contaminant: Technological, toxicological, regulatory and analytical aspects. Toxicol Res. 2023;40(1):11-21. doi: 10.1007/s43188-023-00202-3

 

  1. Xie Q, Jiang D, Yong L, et al. Anthraquinone in Chinese tea: Concentration and health risk assessment. Cogent Food Agric. 2024;10(1):2293557. doi: 10.1080/23311932.2024.2321674

 

  1. Routoula E, Patwardhan SV. Degradation of anthraquinone dyes from effluents: A review focusing on enzymatic dye degradation with industrial potential. Environ Sci Technol. 2020;54(2):647-664. doi: 10.1021/acs.est.9b03737

 

  1. Ghaleb S, Yammine P, El-Nakat H, et al. Analysis of benzene, toluene, and xylene contaminants in the groundwater of Tripoli, Lebanon. Asian J Water Environ Pollut. 2025. doi: 10.36922/AJWEP025310239

 

  1. Wang Y, Cui LH, Feng CL, Dong Z, Fan W, Peijnenburg WJGM. Taxon-toxicity study of fish to typical transition metals: Most sensitive species are edible fish. Environ Pollut. 2021;284:117501. doi: 10.1016/j.envpol.2021.117154

 

  1. Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017;58(5):235-263. doi: 10.1002/em.22087

 

  1. Hoeijmakers JHJ. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411(6835):366-374. doi: 10.1038/35077232

 

  1. Carr TH, McEwen R, Dougherty B, et al. Defining actionable mutations for oncology therapeutic development. Nat Rev Cancer. 2016;16(5):319-329. doi: 10.1038/nrc.2016.35

 

  1. Zhang GW, Ma YD. Spectroscopic studies on the interaction of sodium benzoate, a food preservative, with calf thymus DNA. Food Chem. 2013;141(1):41-47. doi: 10.1016/j.foodchem.2013.02.122

 

  1. Lerman LS. Structural considerations in the interaction of DNA and acridines. J Mol Biol. 1961;3:18-30. doi: 10.1016/S0022-2836(61)80004-1

 

  1. Reynisson J, Schuster GB, Howerton SB, et al. Intercalation of trioxatriangulenium ion in DNA: Binding, electron transfer, x-ray crystallography, and electronic structure. J Am Chem Soc. 2003;125(8):2072-2083. doi: 10.1021/ja0211196

 

  1. Malik MS, Alsantali RI, Jassas RS, et al. Journey of anthraquinones as anticancer agents - a systematic review of recent literature. RSC Adv. 2021;11(57):35806-35827. doi: 10.1039/d1ra05686g

 

  1. Li JS, Feng Z, Wang JT, Huang G, Yan L. Interaction of aflatoxin G1 with free DNA in vitro and possibility of its application in removing aflatoxin G1. J Environ Sci Health B. 2021;56(10):932-940. doi: 10.1080/03601234.2021.1979838

 

  1. Xiong YN, Li JS, Huang GX, Yan L, Ma J. Interacting mechanism of benzo(a)pyrene with free DNA in vitro. Int J Biol Macromol. 2021;167:854-861. doi: 10.1016/j.ijbiomac.2020.11.042

 

  1. Huang GX, Li JS, Yan LJ, Ma J. Adsorption of 1,2-benzanthracene from aqueous solution by DNA-conjugated magnetic nanoparticles. Water Air Soil Pollut. 2022;233(1):14. doi: 10.1007/s11270-021-05476-7

 

  1. Huang GX, Ma J, Li JS, Yan L. Removal of 1,2-benzanthracene via the intercalation of 1,2-benzanthracene with DNA and magnetic bead-based separation. Nucleosides Nucleotides Nucleic Acids. 2021;40(2):137-156. doi: 10.1080/15257770.2020.1839905

 

  1. Gilad Y, Senderowitz H. Docking studies on DNA intercalators. J Chem Inf Model. 2014;54(1):96-107. doi: 10.1021/ci400352t

 

  1. Panigrahi GK, Verma N, Singh N, et al. Interaction of anthraquinones of Cassia occidentalis seeds with DNA and glutathione. Toxicol Rep. 2018;5:164-172. doi: 10.1016/j.toxrep.2017.12.024

 

  1. Liu HK, Sadler PJ. Metal complexes as DNA intercalators. Acc Chem Res. 2011;44(5):349-359. doi: 10.1021/ar100140e

 

  1. Navas F, Mendes F, Santos I, et al. Enhanced cytotoxicity and reactivity of a novel platinum(IV) family with DNA-targeting naphthalimide ligands. Inorg Chem. 2017;56(11):6175-6183. doi: 10.1021/acs.inorgchem.7b00136

 

  1. Raghuvanshi DS, Verma N, Singh SV, et al. Synthesis of thymol-based pyrazolines: An effort to perceive novel potent-antimalarials. Bioorg Chem. 2019;88:102934. doi: 10.1016/j.bioorg.2019.102933

 

  1. Cai CQ, Chen XM, Ge F. Analysis of interaction between tamoxifen and ctDNA in vitro by multi-spectroscopic methods. Spectrochim Acta A Mol Biomol Spectrosc. 2010;76(2):202-206. doi: 10.1016/j.saa.2010.03.017

 

  1. Pan HZ, Wang XM, Ding LS. Interaction mode between methylene blue-Pr(III) complex and herring-sperm DNA. Spectrosc Lett. 2011;44(4):294-299. doi: 10.1080/00387010.2010.523923

 

  1. Tian ZS, Wang ZC, Han XX, et al. Study on the interaction between cannabinol and DNA using acridine orange as a fluorescence probe. J Mol Recognit. 2018;31(2):e2674. doi: 10.1002/jmr.2682

 

  1. Tian ZY, Cui HL, Liu H, et al. Study on the interaction between the 1,4,5,8-naphthalene diimide-spermine conjugate (NDIS) and DNA using a spectroscopic approach and molecular docking. MedChemComm. 2017;8(11):2079-2092. doi: 10.1039/c7md00389g

 

  1. Lien J, Bull T, Michelmore RW, Guo T. Fast fluorescence titration quantification of plasmid DNA with DNA attractive magnetic nanoparticles. Anal Chem. 2021;93(38):12854-12861. doi: 10.1021/acs.analchem.0c04892

 

  1. Cao Y, He XW. Studies of interaction between safranine T and double helix DNA by spectral methods. Spectrochim Acta A Mol Biomol Spectrosc. 1998;54A(6):883-892. doi: 10.1016/S1386-1425(97)00277-1

 

  1. Tan KL, Hameed BH. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J Taiwan Inst Chem Eng. 2017;74:25-48. doi: 10.1016/j.jtice.2017.01.024

 

  1. Wibowo E, Rokhmat M, Abdullah M. Reduction of seawater salinity by natural zeolite (Clinoptilolite): Adsorption isotherms, thermodynamics and kinetics. Desalination. 2017;409:146-156. doi: 10.1016/j.desal.2017.01.026

 

  1. Omidinasab M, Rahbar N, Ahmadi M, et al. Removal of vanadium and palladium ions by adsorption onto magnetic chitosan nanoparticles. Environ Sci Pollut Res Int. 2018;25(34):34262-34276. doi: 10.1007/s11356-018-3137-1

 

  1. Huang S, Liang Y, Huang CS, et al. Systematical investigation of binding interaction between novel ruthenium(II) arene complex with curcumin analogs and ctDNA. Luminescence. 2016;31(7):1384-1394. doi: 10.1002/bio.3119

 

  1. Eryazici I, Yildirim I, Schatz GC, Nguyen ST. Enhancing the melting properties of small molecule-DNA hybrids through designed hydrophobic interactions: An experimental-computational study. J Am Chem Soc. 2012;134(17):7450-7458. doi: 10.1021/ja300322a

 

  1. Rehman SU, Sarwar T, Ishqi HM, Husain MA, Hasan Z, Tabish M. Deciphering the interactions between chlorambucil and calf thymus DNA: A multi-spectroscopic and molecular docking study. Arch Biochem Biophys. 2015;566:7-14. doi: 10.1016/j.abb.2014.12.013

 

  1. Mahanthappa M, Savanur MA, Yellappa S. Molecular interaction studies of zinc sulphide nanoparticles with DNA and its consequence: A multitechnique approach. Luminescence. 2021;36(1):45-56. doi: 10.1002/bio.3912

 

  1. Bag S, Bhowmik S. Fluorescence spectroscopy: A useful method to explore the interactions of small molecule ligands with DNA structures. Methods Mol Biol. 2024;2719:33-49. doi: 10.1007/978-1-0716-3461-5_3

 

  1. Dogra S, Awasthi P, Nair M, Barthwal R. Interaction of anticancer drug mitoxantrone with DNA hexamer sequence d-(CTCGAG)2 by absorption, fluorescence and circular dichroism spectroscopy. J Photochem Photobiol B. 2013;123:48-54. doi: 10.1016/j.jphotobiol.2013.03.015

 

  1. Favicchio R, Dragan AI, Kneale GG, Read CM. Fluorescence spectroscopy and anisotropy in the analysis of DNA-protein interactions. Methods Mol Biol. 2009;543:589-611. doi: 10.1007/978-1-60327-015-1_35

 

  1. Kashanian S, Khodaei MM, Pakravan P. Spectroscopic studies on the interaction of isatin with calf thymus DNA. DNA Cell Biol. 2010;29(10):639-646. doi: 10.1089/dna.2010.1054

 

  1. Ye YX, Liang JQ, She JL, et al. Two new alkaloids and a new butenolide derivative from the Beibu Gulf sponge-derived fungus Penicillium sp. SCSIO 41413. Mar Drugs. 2023;21(1):53. doi: 10.3390/md21010027

 

  1. He G, Wang WX, Zhou YX, Zhao G, Liao J. Ampholytic ion-exchange magnetic beads: A promising tool for selecting short fragments in circulating cell-free DNA analysis. Front Oncol. 2024;14:1423183. doi: 10.3389/fonc.2024.1397680

 

  1. Jiang ZK, Li JS, Huang GX, Yan L, Ma J. Common carp sperm chromatin as an economical and effective remover for benzo(a)pyrene from pollutants. Heliyon. 2024;10(12):e33137. doi: 10.1016/j.heliyon.2024.e33137

 

  1. Zhang J, Li JS, Huang GX, Yan L. Chromatin extracted from common carp testis as an economical and easily available adsorbent for ethidium bromide decontamination. Heliyon. 2022;8(6):e09560. doi: 10.1016/j.heliyon.2022.e09565

 

  1. Li JS, Wang XX, Feng Z, Huang G, Yan L, Ma J. Optimization of aflatoxin B1 removal efficiency of DNA by resonance light scattering spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2023;292:122390. doi: 10.1016/j.saa.2023.122398

 

  1. Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34(5):451-465. doi: 10.1016/S0032-9592(98)00112-5

 

  1. Ho YS, Ng JCY, McKay G. Kinetics of pollutant sorption by biosorbents: Review. Sep Purif Methods. 2000;29(2):189-232. doi: 10.1081/SPM-100100009

 

  1. Radia DN, Essa MS, Aljeboree AM, Jawad MA. Evaluation of the adsorption efficiency of biopolymer hydrogel nanocomposite/nanoclay in wastewater dye removal. Asian J Water Environ Pollut. 2024;21(4): 27-35. doi: 10.3233/AJW240045

 

  1. De Gisi S, Lofrano G, Grassi M, Notarnicola M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Mater Technol. 2016;9:10-40. doi: 10.1016/j.susmat.2016.06.002

 

  1. Miklos DB, Remy C, Jekel M, et al. Evaluation of advanced oxidation processes for water and wastewater treatment - a critical review. Water Res. 2018;139:118-131. doi: 10.1016/j.watres.2018.03.042
Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing