Internet of things-based water quality monitoring: A case study in the coastal areas of Semarang city and Kendal Regency, Central Java, Indonesia

Coastal areas serve as vital habitats for aquatic organisms, but they are facing increasing environmental degradation due to pollution and human activities. Continuous and accurate water quality monitoring in these regions is essential for sustainable ecosystem management. This study presents a novel Internet of Things (IoT)-based water quality monitoring system that distinguishes itself from prior approaches through its real-time, second-by-second data acquisition, on-site display, and low-cost architecture tailored for tropical coastal environments. The system utilizes a Node MicroController unit microcontroller integrated with pH, temperature, and total dissolved solids sensors. It displays data through a liquid crystal display and transmits it to a cloud-based server for further analysis. Calibration of the sensors resulted in an average error rate of 2.0%, which is within the acceptable range for practical water quality assessment. A key innovation of this system is its continuous monitoring and instant detection of deviations in water quality parameters, enhancing the responsiveness to potential environmental threats. This solution reduces the dependence on labor-intensive manual sampling and enables long-term historical data storage and analysis, supporting data-driven decision-making by researchers and local authorities. The results demonstrate that the IoT-based monitoring system is reliable, cost-effective, and adaptable, making it a promising tool for the sustainable management of coastal water ecosystems in Semarang city and Kendal Regency, Central Java, Indonesia.
- Khomich M, Kauserud H, Logares R, Rasconi S, Andersen T. Planktonic protistan communities in lakes along a large-scale environmental gradient. FEMS Microbiol Ecol. 2017;93(4):fiw231. doi: 10.1093/femsec/fiw231
- Djumanto N, Pranoto BE, Diani VS, Setyobudi E. Food and the growth of introduced milkfish, Chanos chanos (Forsskal, 1775) in sermo reservoir, Kulon Progo. J Iktiologi Indones. 2017;17(1):83-100. doi: 10.32491/jii.v17i1.306
- Setyanto A, Rachman NA, Yulianto ES. Distribution and composition of lobster species caught in java sea of east java, Indonesia. J Perikanan Universitas Gadjah Mada. 2018;20(1):49-55. doi: 10.22146/jfs/.36151
- Baryshev IA, Veselov АE, Aleksandrovich D, Andreevich М, Pavlov DS. Benthic disturbance-recovery dynamics after construction impact in mountain river Mzymta (Sochi, Black Sea Basin). Turk J Fish Aquat Sci. 2017;17:1245-1251. doi: 10.4194/1303-2712-v17
- Saoum MR, Sarkar SK. Monitoring mangrove forest change and its impacts on the environment. Ecolo Indic. 2024;159:111666. doi: 10.1016/j.ecolind.2024.111666
- Pereira L. Non-indigenous seaweeds in the iberian Peninsula, Macaronesia Islands (Madeira, Azores, Canary Islands) and balearic Islands: Biodiversity, ecological impact, invasion dynamics, and potential industrial applications. Algal Res. 2024;78:103407. doi: 10.1016/j.algal.2024.103407
- Congdon VM, Hall MO, Furman BT, et al. Common ecological indicators identify changes in seagrass condition following disturbances in the Gulf of Mexico. Ecol Indic. 2023;156:111090. doi: 10.1016/j.ecolind.2023.111090
- Ioele G, De Luca M, Grande F, et al. Assessment of surface water quality using multivariate analysis: Case study of the crati River, Italy. Water (Switzerland). 2020;12(8):2214. doi: 10.3390/w12082214
- Yang YCE, Wi S, Ray PA, Brown CM, Khalil AF. The future nexus of the Brahmaputra River Basin: Climate, water, energy and food trajectories. Glob Environ Change. 2016;37:16-30. doi: 10.1016/j.gloenvcha.2016.01.002
- Wanjule RV, Asadullah BM, Shinde HH. Assessment of wastewater quality of Kham river for Irrigation. In: Materials Today: Proceedings. Vol. 5. Netherlands: Elsevier Ltd.; 2018. p. 113-119. doi: 10.1016/j.matpr.2017.11.061
- Kuriqi A, Pinheiro AN, Sordo-Ward A, Garrote L. Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants. Appl Energy. 2019;256:113980. doi: 10.1016/j.apenergy.2019.113980
- Panfili I, Bartucca ML, Ballerini E, Buono Del D. Combination of aquatic species and safeners improves the remediation of copper polluted water. Sci Total Environ. 2017;601-602:1263-1270. doi: 10.1016/j.scitotenv.2017.06.003
- Wang C, Shan B, Zhang H, Zhao Y. Limitation of spatial distribution of ammonia-oxidizing microorganisms in the Haihe River, China, by heavy metals. J Environ Sci. 2014;26(3):502-511. doi: 10.1016/S1001-0742(13)60443-X
- Apriliani KF. Analisis Potensi Lokal di Wilayah Pesisir Kabupaten Kendal dalam upaya mewujudkan blue economy. Econ Dev Anal J. 2014;3(1):59-69. doi: 10.15294/edaj.v3i1.3514
- Hanifah DN, Wulandari SY, Maslukah L, Supriyantini E. Horizontal distribution of inorganic nitrate and phosphate concentrations in the water of Kendal river estuary, Kendal district. J Trop Marine Sci. 2018;1(1):27-32. doi: 10.33019/jour.trop.mar.sci.v1i1.654
- Sari KD, Saputra SW, Solichin A. Biological aspects of banana shrimp (Penaeus merguiensis de Man, 1888) in the Kendal waters, central java. Manag Aquat Res (MAQUARES). 2017;6(2):128-136. doi: 10.14710/marj.v6i2.19821
- Abdullah FN, Solichin A, Saputra SW. Aspects of fish biology and utilization rate goatfish (Upeneus moluccensis) landed at the fish auction place (TPI) tawang Kendal district central java province. Manag Aquat Res J (MAQUARES). 2015;4(2):28-37. doi: 10.14710/ijfst.5.1
- Huda AA, Solichin A, Sabdaningsih A, Saputra SW. Gonad maturity and spawning potential ratio of spotted scat (Scatophagus argus) landed at the TPI Tanggul Malang, Kendal. J Pasir Laut. 2022;6(1):1-11. doi: 10.14710/jpl.2022.44359
- Fitri HK, Suherman A, Boesono H. Strategy of developing of Tawang fish auction (FAP) at Kendal regency, central java. J Marine Fish Soc Econ. 2021;16(2):207-223. doi: 10.15578/jsekp.v16i2.10091
- BPS-Statistics of Semarang Municipality. Semarang Municipality in Figures; 2022. Available from: https:// semarangkota.bps.go.id/id/publication/2022/02/25/ b4fc35189dd9d76b896dcbf3/kota-semarang-dalam-angka-2022.html [Last accessed on 2025 Jan 27].
- Ujianti RMD, Novita M, Burhanuddin A, et al. Analysis of water quality in watershed using heavy metal pollution index. Depik. 2024;13(2):201-211. doi: 10.13170/depik.13.2.35680
- Suryani A, Nirmala K, Djokosetyanto D. The accumulation of heavy metal (Lead And Copper) in water, sediment and milkfish ponds in dukuh tapak, Kelurahan Tugurejo, Semarang. J Pengelolaan Sumberdaya Alam Dan Lingkungan. 2018;8(3):271-278. doi: 10.29244/jpsl.8.3.271-278
- Nurfuad FA, Suryanti S, Jati OE, Anggoro S. Ionic patterns of white shrimp (Penaeus merguiensis) in the waters of Tambak Lorok, Semarang. J Pasir Laut. 2023;7(2):80-85. doi: 10.14710/jpl.2023.58572
- Hanif KH, Suprijanto J, Pratikto I. Identification of microplastics at Kendal Estuary, Kendal regency. J Marine Res. 2021;10(1):1-6. doi: 10.14710/jmr.v10i1.26832
- Jubaedah S, Wulandari SY, Zainuri M, Maslukah L, Ismunarti DH. Studi kandungan bahan organik di perairan muara sungai jajar, kabupaten demak, jawa tengah. Indones J Oceanogr. 2021;3(3):230-236. doi: 10.14710/ijoce.v3i3.11442
- Suwatanti EPS, Maridi M, Suntoro S. Water quality analysis using pollution index method in klampok sub-watershed, semarang regency, Indonesia. Caraka Tani J Sustain Agric. 2022;37(2):243. doi: 10.20961/carakatani.v37i2.58393
- Ujianti RMD, Androva A. Analysis of water quality and river waters microbology for manifestation of food safety. Adv Sustain Sci Eng Technol. 2019;1(1):1-7. doi: 10.26877/asset.v1i1.4877
- Susanto A, Alimuddin A, Herjayanto M, Budiaji W, Fitria N. Rancang bangun sistem monitoring kualitas air untuk pemeliharaan organisme laut. J Edukasi Dan Penelitian Inform (JEPIN). 2020;6(3):386. doi: 10.26418/jp.v6i3.42899
- Talanta DE. Rancang bangun kontrol kadar amonia dan ph air berbasis arduino pada budidaya ikan. Otopro. 2021;17(1):27-32. doi: 10.26740/otopro.v17n1.p27-32
- Chen FL, Yang BC, Peng SY, Lin TC. Applying a deployment strategy and data analysis model for water quality continuous monitoring and management. Int J Distrib Sens Netw. 2020;16(6):1-15. doi: 10.1177/1550147720929825
- Noerhayati E, Suprapto B, Rahmawati A, Mustika S. Improving wastewater quality system using the internet of things-based phytoremediation method. J Ecol Eng. 2023;24(3):254-262. doi: 10.12911/22998993/158382
- Widodo T, Santoso AB, Ishak SI, Rumeon R. Sistem kendali proporsional kualitas air berupa ph dan suhu pada budidaya ikan lele berbasis iot. J Edukasi Dan Penelitian Inform (JEPIN). 2023;9(1):59. doi: 10.26418/jp.v9i1.59607
- Rayabharapu VK, Rampur V, Jyothi NM, Tripathi V, Bhaskar T, Glory KB. IOT sensor-based pollution management control technique. Meas Sens. 2022;24:100513. doi: 10.1016/j.measen.2022.100513
- Alfia R, Widodo A, Kholis N, Nurhayati N. Sistem monitoring kualitas air pada sistem akuaponik berbasis IoT. J Teknik Elektro. 2021;10(3):707-714. doi: 10.26740/jte.v10n3.p707-714
- Zamora R, Harmadi H, Wildian W. Perancangan alat ukur TDS (Total Dissolved Solid) air dengan sensor konduktivitas secara real time. Sainstek J Sains Dan Teknologi. 2016;7(1):11. doi: 10.31958/js.v7i1.120
- Makumbura RK, Mampitiya L, Rathnayake N, et al. Advancing water quality assessment and prediction using machine learning models, coupled with explainable artificial intelligence (XAI) techniques like shapley additive explanations (SHAP) for interpreting the black-box nature. Results Eng. 2024;23:102831. doi: 10.1016/j.rineng.2024.102831
- Dharmarathne G, Abekoon AMSR, Bogahawaththa M, Alawatugoda J, Meddage DPP. A review of machine learning and internet-of-things on the water quality assessment: Methods, applications and future trends. Results Eng. 2025;26:105182. doi: 10.1016/j.rineng.2025.105182
- Fadilah MFF, Hanani A, Chamidy T. Sistem pengukuran kualitas media pada larva BSF (Black Soldier Fly) berbasis internet of things menggunakan metode naive bayes. JISKA J Inform Sunan Kalijaga. 2023;8(2):125-139. doi: 10.14421/jiska.2023.8.2.125-139
- APHA (American Public Health Association). Standard Methods for the Examination of Water and Wastewater. 21st ed. United States: American Public Health Association; 2005.
- Forhad HM, Uddin MR, Chakrovorty RS, et al. IoT based real-time water quality monitoring system in water treatment plants (WTPs). Heliyon. 2024;10(23):e40746. doi: 10.1016/j.heliyon.2024.e40746
- Adeleke I, Nwulu N, Adebo OA. Internet of things (IoT) in the food fermentation process: A bibliometric review. J Food Process Eng. 2023;46(5):e14321. doi: 10.1111/jfpe.14321
- Zaidi Farouk MIH, Jamil Z, Abdul Latip MF. Towards online surface water quality monitoring technology: A review. Environ Res. 2023;238(Pt 1):117147. doi: 10.1016/j.envres.2023.117147
- Lakshmikantha V, Hiriyannagowda A, Manjunath A, Patted A, Basavaiah J, Anthony AA. IoT based smart water quality monitoring system. Glob Trans Proc. 2021;2(2):181-186. doi: 10.1016/j.gltp.2021.08.062
- Pasika S, Gandla ST. Smart water quality monitoring system with cost-effective using IoT. Heliyon. 2020;6(7):e04096. doi: 10.1016/j.heliyon.2020.e04096
- Adeleke IA, Nwulu NI, Ogbolumani OA. A hybrid machine learning and embedded IoT-based water quality monitoring system. Intern Things (Netherlands). 2023;22:100774. doi: 10.1016/j.iot.2023.100774
- Syafrudin S, Sarminingsih A, Juliani H, Budihardjo MA, Puspita AS, Auliya Arlin Mirhan S. Water quality monitoring system for temperature, pH, turbidity, DO, BOD, and COD parameters based on internet of things in garang watershed. Ecol Eng Environ Technol. 2024;25(2):1-16. doi: 10.12912/27197050/174412
- Chan Kujiek D, Sahile ZA. Water quality assessment of elgo river in Ethiopia using CCME, WQI and IWQI for domestic and agricultural usage. Heliyon. 2024;10(1):e23234. doi: 10.1016/j.heliyon.2023.e23234
- Lalaoui M, Bouchareb N, Bousbia S, et al. Assessment of water quality for drinking and domestic use from three sources in the mila region, northeastern algeria. Asian J Water Environ Poll. 2024;21(6):151-159. doi: 10.3233/AJW240082
- Anyango GW, Bhowmick GD, Sahoo Bhattacharya N. A critical review of irrigation water quality index and water quality management practices in micro-irrigation for efficient policy making. Desalination Water Treat. 2024;318:100304. doi: 10.1016/j.dwt.2024.100304
- Venkatesan G, Sasikumar S, Karthick P, Balamurali RS. Assessing water quality in the cooum river basin: A comprehensive review of methodologies and findings. Asian J Water Environ Poll. 2024;21(6):9-14. doi: 10.3233/AJW240067
- Melad RS, Nonato RLV, Salazar DJ, Ligaray MV, Choi AES. Spatial assessment of water quality in Mananga River in Talisay City, Cebu, Philippines. Results Eng. 2024;24:103030. doi: 10.1016/j.rineng.2024.103030
- Zeng L. A Study on Measures to Prevent from Water Eutrophication in Longhu Lake, Jinjiang. 6th International Conference on Machinery, Materials, Environment, Biotechnology and Computer; 2016. p. 1948-1952. doi: 10.2991/ssehr-16.2016.259
- Young SS, Yang HN, Huang DJ, Liu SM, Huang YH. Using benthic macroinvertebrate and fish communities as bioindicators of the tanshui river basin around the greater taipei area -- multivariate analysis of spatial variation related to levels of water pollution. Int J Environ Res Public Health. 2014;11:7116-7143. doi: 10.3390/ijerph110707116
- Rangasamy E, Muniyandi M. Current status of stream water quality around selected Tea Gardens from Southern Western Ghats, Tamil Nadu, India - a case study. HydroResearch. 2024;7:99-108. doi: 10.1016/j.hydres.2024.01.002
- Kundu S, Coumar V, Rajendiran S, Ajay K, Rao AS. Phosphates from detergents and eutrophication of surface water ecosystem in India. Curr Sc. 2015;108(7):1320-1325.
- Bhatt S, Mishra AP, Chandra N, et al. Characterizing seasonal, environmental and human-induced factors influencing the dynamics of Rispana River’s water quality: Implications for sustainable river management. Results Eng. 2024;22:102007. doi: 10.1016/j.rineng.2024.102007
- Al Yousif MA, Chabuk A. Assessment of the al-abbasiyah river (Iraq) water quality for drinking purposes using the water quality index and GIS software. J Ecol Eng. 2023;24(8):157-174. doi: 10.12911/22998993/166396