pH and Temperature Effect on Transport Parameters of Zn Retention by NF Membrane
The objective of our study was to take knowledge about the possible influence of various operating parameters on the performance of the membrane process through evolution of transport parameters in order to understand the mechanism which governs the separation of the zinc ions by nanofiltration. The operating parameters to be considered in this study were temperature and pH. The experiments were performed on zinc nitrate solutions prepared at 10 mg/L in Zn2+. The results have shown that an increase in the temperature generates a reduction in the solute retention (68% at 13°C and 23% at 36 °C). The study on the pH effect have shown that the Zn ions retention decreases when the pH increases (90% at pH 2 and 60% at pH 6), while that of the nitrate ions retention increases (17% at pH 2), reached a maximum (67% at pH 4) and then decreases (56% at pH 6). These results were related to the calculation of solute transport parameters in order to know more comprehensive retention and transfer mechanism.
Ahn, K.H., Song, K.G., Cha, H.Y. and I.T. Yeom (1999). Removal of ions in nickel electroplating rinse water using low-pressure nanofiltration. Desalination, 122(1): 77-84.
Ballet, G.T., Gsara, L., Hafiane, A. and M. Dhabi (2004). Transport coefficient and cadmium salt rejection in nanofiltration membrane. Desalination, 167: 369-376.
Boucard, F. (2000). Contribution à la caractérisation des mécanismes de transport en nanofiltration: experiences et modéles. Thèse de l’Université de Caen, France.
Capelle, N., Moulin, P., Charbit, F. and R. Gallo (2002). Purification of heterocyclic drug derivatives from concentrated saline solution by nanofiltration. Journal of Membrane Science, 196: 125-141.
Chevalier, S. (1999). Modélisation mathématique des mécanismes de séparation en nanofiltration. Thèse de l’Université Bordeaux I, France.
Childress, A.E. and M. Elimelech (2000). Relating nanofiltration membrane performance to membrane charge
(electrokinetic) characteristics. Environment Science and Technology, 34: 3710-3716.
Combe, C., Guizard, P., Aimar, P. and V. Sanchez (1997). Experimental determination of four characteristics used to predict the retention of a ceramic nanofiltration membrane. Journal of Membrane Science, 129: 147-160.
Hafiane, A., Lemordant, D. and M. Dahbi (2000). Removal of hexavalent chromium by nanofiltration. Desalination, 130: 305-312.
Hagmeyer, G. and R. Gimbel (1999). Modelling the rejection of nanofiltration membranes using zeta potential measure- ments. Separation and Purification Technology, 15: 19-30.
Jeantet, R. and J.L. Maubois (1995). Sélectivité de membranes de nanofiltration: Effet du pH, de la nature et de la concentration des solutions. Lait, 75: 595-610.
Labbez, C., Fievet, P., Szymczyk, A., Vidonne, A., Foissy, A. and J. Pagetti (2002). Analysis of the salt retention of a titania membrane using the “DSPM” model: Effect of pH, salt concentration and nature. Journal of Membrane Science, 208: 315-329.
Lefebvre, X. (2002). Modelling of multi-electrolyte transport in charged ceramic and organic nanofilters using the computer simulation program NanoFlux. Desalination,147: 231-236.
Maurel, A. (1993). Techniques séparatives à membranes, Osmose inverse, nanofiltration, ultrafiltration tangentielle, Considérations théoriques. Techniques de l’ingénieur, Paris, France.
Mehdizadih, H. (1990). Modeling of transport phenomena in reverse osmosis membranes. Thèse de doctorat, McMaster University, Canada.
Mehiguene, K., Garba, Y., Taha, S., Gondrexon, N. and G. Dorange (1999). Ion transport modelling through nanofiltration membranes. Journal of Membrane Science,15(2): 181-187.
Nystöm, M., Tanninen, J. and M. Mantari (2000). Separation of metal sulphates and nitrates from their acids using nanofiltration. Membrane Technology, 117: 5-9.
Oak, M.S., Kobayashi, T., Wang, H.Y., Fukaya, T. and N. Fujii (1997). pH effect on molecular size exclusion of polyacrylonitrile ultrafiltration membranes having carboxylic acid groups. Journal of Membrane Science, 123: 185-195.
Ozaki, H., Sharma, K. and W. Saktaywin (2002). Performance of an ultra-low-pressure reverse osmosis membrane for separating heavy metal: Effects of interference parameters. Desalination, 144: 287-294.
Quin, J.J., Oo, M.H., Lee, H. and B. Coniglio (2004). Effect of feed pH on permeates pH and ion rejection under acidic conditions in NF process. Journal of Membrane Science,232: 153-159.
Quin, J.J., Oo, M.H., Wai, M.N., Ang, C.M., Wang, F.S. and H. Lee (2003). A dual membrane UF/RO process reclamation of spent rinses from a nickel-plating operation—A case study. Water Research, 37: 32-69.
Schaep, J., Vandecasteele, C., Wahab Mohammad, A. and R.W. Bowen (2001). Modelling the retention of ionic components for different nanofiltration membranes. Separation and Purification Technology, 22(23): 169-179.
Sharma, R. and S. Chellam (2006). Temperature and concentration effects on electrolyte transport across porous thin-film composite nanofiltration membranes: Pore transport mechanisms and energetics of permeation. Journal of Colloid and Interface Science, 298: 327-340.
Tanninen, J. and M. Nyström (2002). Separation of ions in acidic conditions using NF. Desalination, 147: 295-299.
Teixeira, M.R., Rosa, M.J. and M. Nyström (2005). The role of membrane charge on nanofiltration performance. Journal of Membrane Science, 265: 160-166.
Wang, X.L., Wang, W.N. and D.X. Wang (2002). Experimental investigation on separation performance of nanofiltration membranes for inorganic electrolyte solutions. Desali- nation, 145: 115-122.
Wittman, E. (1998). La nanofiltration dans le domaine du traitement des eaux: Conditions d’application et modélisation. Thèse de l’université Montpellier II, France.