AccScience Publishing / AJWEP / Volume 6 / Issue 4 / DOI: 10.3233/AJW-2009-6_4_03
RESEARCH ARTICLE

Degradation of Petroleum Hydrocarbon in the Wetlands by Estuarine Biofilms

Lovet T. Kigigha1* Graham J.C. Underwood2
Show Less
1 Department of Biological Sciences, Niger Delta University, Wilberforce Island, PMB 71, Yenagoa, Bayelsa State, Nigeria
2 Department of Biological Sciences, University of Essex, Colchester, CO4 3SQ, UK
AJWEP 2009, 6(4), 11–25; https://doi.org/10.3233/AJW-2009-6_4_03
Submitted: 22 May 2007 | Accepted: 15 January 2009 | Published: 1 January 2009
© 2009 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

As a result of increased generation of energy from fossil fuel in recent times, there is increased contamination of sensitive ecosystems (such as the estuaries) worldwide. The human population is not exposed to the severity of the impact of pollutants due largely to the activities of microorganisms. The survival of mankind from increasing pollution inevitably depends on the constant monitoring of the environment. The estuaries exhibit interesting features as choice human habitats in which pollutants are circulated continuously. The biota (especially the microalgal and bacterial biofilms) in such ecosystems become hardy and are very valuable agents in pollutant biodegradation. This paper reviews the peculiar nature of the estuaries in recycling pollutants; the interaction between the resilient estuarine biofilms and recalcitrant PHC in the wetlands and the field evaluation of in situ bioremediation.

Keywords
Petroleum hydrocarbon
estuary
biofilm
pollution
biodegradation
toxicity
Conflict of interest
The authors declare they have no competing interests.
References

Achong, G.R., Rodriguez, A.M. and A.M. Spormann (2001). Benzylsuccinate synthase of Azoarcus sp. strain T: cloning, sequencing, transcriptional organization, and its role in anaerobic toluene and m-xylene mineralization. J. Bacteriol., 183: 6763-6770.

Admiraal, W., Peletier, H and H. Zomer (1982). Observations and experiments on the population dynamics of epipelic diatoms from an estuarine mudflat. Estuar. Coast Shelf Sci., 14: 471-487.

Admiraal, W. (1984). The ecology of estuary inhabiting diatoms. In: Progress in Phycological Research (F.E. Round and D.J. Chapman eds), 3: 269-322. Biopress Bristol.

Aggarwal, P.K. and R.E. Hinchee (1991). Monitoring in situ bio-degradation of hydrocarbons using stable carbon isotopes. Environ. Sci. and Tech., 25: 1178-1180.

Aislabie, J., Mcleod, M. and R. Fraser (1998). Potential for biodegradation of hydrocarbons in soil from the Ross Dependency, Antarctica. Appl. Microbiol. Biotechnol., 49: 210-214.

Albaiges, J., Frei, R.W. and E. Merian (1984). Chemistry and analysis of hydrocarbons in the environment. Gordon and Breach Sci. Pub., New York, London, Moniteaux, Tokyo, p. 314.

Allen, J.E. (1992). Energy Resources for a changing world. Cambridge University Press, Cambridge.

Allison, D.G. and P. Gilbert (1995). Modifications by surface association of antimicrobial susceptibility of bacterial populations. J. Ind. Microbiol., 15: 311-317.

Allison, D.G., McBain, A.J. and P. Gilbert (2000). Biofilms: Problems of control. In: Community Structure and Cooperation in Biofilms (D.G. Allison, P. Gilbert, H.M. Lappin-Scott and M.Wilson, eds) 59th Symposium of the Society for General Microbiology. University of Exeter. Cambridge University Press.

Alloway, B.J. and D.C. Ayres (1993). Pollution in the modern world. In: Chemical Principles of environmental pollution. Blackie Academy Professional, London.

Atkinson, B. and H.W. Fowler (1974). The significance of microbial film in fermenters. Adv. Biochem. Eng., 3: 221-227.

Atlas, R.M. (1975). Effects of temperature and crude oil composition on petroleum biodegradation. Appl. Microbiol., 30: 369-409.

Atlas, R.M. (1981). Microbial degradation of petroleum hydrocarbons: An environmental perspective. Microbiol. Review., 45:180-209.

Atlas, R.M. and R. Bartha (1972a). Degradation and mineralization of petroleum in sea water; limitations by Nitrogen and Phosphorous. Biotech. Bioeng., 14: 309-317.

Atlas, R.M. and R. Bartha (1972b). Biodegradation of petroleum in sea water at low temperature. Can. J. Microbiol., 18: 1351-1855.

Austin, B., Calomiris, J.J., Walker, J.D. and R.R. Colwell (1977). Numerical Taxonomy and ecology of petroleum degrading bacteria. Appl. Environ. Microbiol., 34: 60-68.

Austin, B., Colwell, R.R., Walker, J.D. and J.J. Calomiris (1977). The Application of Numerical Taxonomy to the study of petroleum degrading bacteria isolated from the environment. Dev. Indust. Microbiol., 18: 685-695.

Bartell, S.M., Landrum, P.F., Diesy, J.P. and G.J. Leversee (1981). Stimulated transport of polycyclic aromatic hydrocarbons in artificial streams. Dev. Environ. Model., 1: 133-143.

Beller, H.R. and A.M. Spormann (1998). Analysis of the novel benzylsuccinate synthase reaction for anaerobic toluene activation based on structural studies of the product. J. Bacteriol., 180: 5454-5457.

Blanchard, G.F. and J.M. Guarini (1999). Temperature effects on microphytobenthic productivity in Temperate intertidal mudflats. Vie Milieu, 48: 271-284.

Bossret, I., Kachel, W.M. and R. Bartha (1984). Fate of hydrocarbons during oily sludge disposal in soil. Appl. Envir. Microbiol., 47: 763-772.

Bott, T.L., Rogenmuser, K. and P. Thorne (1978). Effects of No. 2. fuel, Nigerian crude oil and used crankcase oil on benthic algal communities. J. Environ. Sci. Health, 10: 751-779.

Brotas, V. and F. Catarino (1995). Microphytobenthos primary production of Tagus Estuary intertidal flats (Portugal). Neth. J. Aquat. Ecol., 29: 333-339.

Bryom, J., Beastall, A. and S. Scotland (1970). Bacterial degradation of crude oil. Mar. Poll. Bull., 1: 25-26.

Buermann, W. (1993). Remediation by Groundwater and Soil Air Circulation In Situ Using the Vacuum-Vaporizer-Well (UVB) Technolgy. Proceedings of International Symposium on Environmental Contamination in Central and Eastern Europe. October 12-16, 1992. Budapest, Hungary.

Cappuzo, J.M. (1987). The effects of petroleum hydrocarbons: Assessments from experimental results. In: Long-term Environmental Effects of off-shore Oil and Gas Development (ed. D.F. Boesch and N.N. Rabalais), Elsevier, London, pp. 343-410.

Carman, K.R., Fleeger, J.W., Means, J.C., Pomarico, S.M. and D.J. Mcmillin (1995). Experimental investigation of the effects of polynuclear aromatic hydrocarbons on an estuarine sediment food web. Marine Environ. Res., 40(3): 289-318.

Carman, K.R., Fleeger, J.W. and S.M. Pomarico (2000). Does historical exposure to hydrocarbon contamination alter the response of benthic communities to diesel contamination? Mar. Environ. Res., 49: 255-278.

Catallo, W.J. (1993). Ecotoxicology and wetland ecosystems: Current understanding and future needs. Environ. Toxicol. Chem., 12: 2209-2224.

Cerniglia, C.E., Gibson, D.T. and C. Van Baalen (1980). Oxidation naphthalene by cyanobacteria and microalgae. J. Gen. Microbiol., 116: 495-500.

Characklis, W.G. (1990). Microbial fouling. In: Biofilms (W.G. Characklis and K.C. Marshall, eds) NY: Wiley, pp. 523-584.

Clark, R.B., Frid, C. and M. Attrill (1997). Oil Pollution. In: Marine Pollution. Clarendon Press Oxford.

Coates, J.D., Chakraborty, R., Lack, J.G., Oconnor, S.M., Cole, K.A., Bender, K.S. and L.A. Achenbach (2011). Anaerobic benzene oxidation coupled to nitrate reduction in pure cultures by two strains of Dechloromonas. Nature, 411: 1039-1043.

Cole, B.E., Cloern, J.E. and A.E. Alpine (1986). Biomass and productivity of three phytoplankton size classes in San Francisco Bay. Estuaries, 9: 117-126.

Cole, B.E. and J.E. Cloern (1987). An empirical model for estimating phytoplankton productivity in estuaries. Mar. Ecol. Prog. Seri., 36: 299-305.

Cooney, J.J. (1984). The fate of petroleum pollutants in freshwater ecosystems. In: Petroleum Microbiology (R.M. Atlas, ed.), pp. 399-433.

Costerson, J.W., Cheng, K-J., Geesey, G.G., Lad, T.I., Nickel, J.C., Dasgupta, M. and T.J. Mairrie (1987). Bacterial Biofilms in nature and disease. Ann. Rev. Microbiol., 41: 435-464.

Costerton, J.W., Marrie, T.J. and K-J. Cheng (1985). Phenomenon of bacterial adhesion. In: Bacterial Adhesion: Mechanisms and Physiological Significance (D.C. Savage and M. Fletcher, eds.), Plenum Press, New York, pp. 3-43.

Craigg, B.A., Parkes, R.J., Fry, J.C., Herbert, R.A., Wimpenny, J.W.T. and J.M. Gettliff (1990). Bacterial biomass and activity profiles within deep sediment layers. Proceedings of the Ocean Drilling Programme, 112: 607-619.

Cripps, R.E. and R.J. Watkinson (1978). Poly aromatic hydrocarbons: Metabolism and environmental aspects, In: J.R. Watkinson (ed), Developments in biodegradation of hydrocarbons-1. Applied Science Publishers, Ltd., London, pp. 113-134.

Dade, W.B., Self, R.L., Pellerinn, B., Moffet, A., Jumars, P.A. and A.R.M. Nowell (1996). The effects of bacteria on the flow behaviour of clay seawater suspensions. J. Sediment Res., 66: 39-42.

Davis, S. (2000). Transportation Energy Data Book: Ed 20. Oak Ridge National Laboratory, Department of Energy, ORNL6959.

Davies, J.A. and D.E. Hughes (1968). The biochemistry and microbiology of crude oil degradation. In: J.D. Carthy and D.R. Arthur (eds.). The biological effects of oil pollution on littoral communities (supplement to Field Study, vol. 2). E.W. Classey, Ltd., Hampton, Middlesex, England, pp. 139-144.

Dean-Ross, D., Moody, J.D., Freeman, J.P., Doerge, D.R. and C.E. Cerniglia (2001). Metabolism of anthracene by a Rhodococcus species. FEMS Microbiol. Lett., 204: 205-211.

Decho, A.W. (1994). Molecular scale events influencing the macro-scale cohesiveness of exopolymers. In: Biostabilization of Sediments (eds. W.E. Krumben, D.M. Paterson and L. Stahl), BIS, Oldenburg, Germany, pp. 135-148.

Decho, D.G. (1990). Chemical communication within microbial biofilms: chemitaxis and quorum sensing in bacteria cells. In: Microbial Extracellular Polymeric Substances (J. Wingender, T.R. Neu and H.-C Flemming, eds.), Heidelgerg: Springer, pp. 155-169.

Dibble, J. and R. Bartha (1976). The effects of iron on the biodegradation of petroleum in sea water. Appl. Environ. Microbiol., 31: 544-550.

Dutta, T.K. and S. Harayama (2001). Biodegradation of n-alkylcycloalkanes and n-alkylbenzenes via new pathways in Alcanivorax sp. strain MBIC 4326. Appl. Environ. Microbiol., 67:1970-1974.

Edgar, L.A. and J.D. Pickett-Heaps (1984). Diatom locomotion. In: Progress in Phycological Research (eds. F.E. Round and D.J. Chapman), Biopress, Bristol. Vol. 3, pp. 47-88.

Eginton, P.J., Holah, J., Allisond, G., Andley, P.S. and P. Gilbert (1998). Changes in the strength of attachment of microorganisms to surfaces following treatment with disinfectants and cleansing agents. Lett, Appl. Microbiol., 27: 101-106.

Elmgren, R., Vargo, G.A., Grassle, D.R., Heinle, G., Langlois, G. and S.L. Vargo (1980). Trophic interactions in experimental marine ecosystems perturbed by oil. In: Microcosms in Ecological Research (ed. J.P. Giesy Jr.), US Department of Energy, Symposium Series 52, pp. 779-800.

Elmgren, R., Hansen, S., Larsson, U., Sundelin, B. and P.D. Boehm (1983). The ‘Tsesis’ oil spill: Acute and long-term impact on the benthos. Mar. Biol., 73: 51-65.

Ellis, R.E. (1977). Degradation of phenolic compounds by freshwater algae. Plant Sci. Lett., 8: 213-216.

Ensley, B. and M.F. Deflaun (1993). Hazardous Chemicals and Biotechnology: Past Successes and Future Promises. In: l. Young and C. Cerniglia (eds), Microbial Transformation and Degradation of Toxic Organic Chemicals. John Wiley & Sons, New York.

Falkowski, P.G., Greene, R.M. and R.J. Geider (1992). Physiological limitation on phytoplankton productivity in the ocean. Oceanography, 5: 84-91.

Filauro, G., Andreotti, G., Arlotti, D. and H.J. Reisingrer (1998). Blow-out of Trecate 24 crude oil well: how bioremediation technique is solving a major environmental emergency in a valuable agricultural area. In: Contaminated Soil, 98. Thomas Telford, London, pp. 403-412.

Floodgate, G.D. (1984). The fate of petroleum in marine ecosystems. In: Petroleum Microbiology (R. M. Atlas, ed.), Macmillan Pub. Co. New York, pp. 355-398.

Foght, J.M. and D.W.S. Westlake (1987). Biodegradation of hydrocarbons in freshwater: Chemistry, Biology, and Countermeasure Technolgy. Proceedings of the Symposium of Oil Pollution in Freshwater, Edmonton, Alberta Canada (J.H. Vandermeulen and S.E. Hrudey, eds), pp. 217-251.

Foster, F.W. (1962). Bacteriological oxidation of hydrocarbons. In: O. Hiyashi (ed.), Oxygenases. Academic Press, Inc., New York, pp. 241-271.

Geissdorfer, W., Kok, R.G., Ratajczak, A., Hellingwerf, K.J. and W. Hillen (1999). The genes rubA and rubB for alkane degradation in Acinetobacter sp. strain ADP1 are in an operon with estB, encoding an esterase, and oxyR. J.Bacteriol., 181: 4292–4298.

Gibbs, C.F. and S. Davis (1976). The rate of microbial degradation of oil in a beach gravel column. Microbiol. Ecol., 3: 55-64.

Gibson, D.T. (1968). Microbial degradation of aromatic compounds. Science, 161: 1093-1097.

Glassman, D.L. and L.A. Mcnicol (1980). Physical characterization of extra-chromosomal DNA in Chesapeake Bay bacteria from oil polluted and non-polluted sites. Maryland Water Resources Research Centre, Technical Report No. 66. University of Maryland.

Gordon, D.C. and N.J. Prouse (1973). The effect of three oils on marine phytoplankton photosynthesis. Marine Biol., 22: 329-333.

Greer, C.W., Fortin, N., Roy, R., Whyte, L.G. and K. Lee (2003). Indigenous sediment microbial activity in response to nutrient enrichment and plant growth following a controlled oil spill on a freshwater wetland. Bioremediation Journal, 7(1): 69-80.

Griffiths, R.P., Caldwell, B.A., Broich, W.A. and R.Y. Morita (1981). Long-term effects of crude oil on the uptake and respiration of glucose and glutamate in Artic and Subartic marine environments. Appl. Environ. Microbiol., 42: 792-801.

Gunkel, W. (1967). Experimentel okologische untersuchungen luber dies limitierenden Faktoren des Mikrobiellen olabbaues in maien milieu. Haelgol. Wiss. Meeresunters., 15: 210-224.

Gunkel, W. and C. Gassman (1980). Oil, oil-dispersants and related substances in the marine environment. Helgol. Wiss. Meeresunters., 33: 164-181.

Gunkel, W., Gassmann, G., Oppenheimer, C.H and I. Dundas (1980). Preliminary results of baseline studies of hydrocarbons and bacteria in the North Sea: 1975, 1976 and 1977. In: Ponencias del simposio International en : Restanceia a los Antibiosis y Microbiologi marina, pp. 223-247.

Hada, H.S. and R.K. Sizemore (1981). Incidence of plasmids in marine Vibrio species isolated from an oil field in the North Western Gulf of Mexico. Appl. Environ. Microbiol., 41: 199-202.

Hamamura, N., Yeager, C.M. and D.J. Arp (2001). Two distinct monooxygenases for alkane oxidation in Nocardiodes sp. strain CF8. Appl. Environ. Microbiol., 67: 4992-4998.

Hamilton, W.A. (1985). Sulphate-reducing bacteria and anaerobic corrosion. Ann. Rev. Microbiol., 39: 195-217.

Heip, C.H.R., Goosen, N.K., Herman, P.M.J., Kromkamp, J., Middleburg, J.J. and K. Soetact (1995). Production and consumption of biological particles in temperate tidal estuaries. Oceanogr. Mar. Biol. Annu. Rev., 33: 1-149.

Herrling, B. and J. Stamm (1992). Groundwater Circulation Wells (GZB) for In Situ and On-Site Aquifer Remediation. Proceedings of the International Meeting of Nuclear and Waste Management, Boise, Idaho, pp. 1188-1193.

Hodson, R.E., Azam, F. and R.F. Lee (1977). Effects of four oils on marine bacterial populations: controlled ecosystem pollution experiment. Bulletin of Marine Science, 27: 119-126.

Holah, J.T., Bloomfield, S.F., Walker, A.J. and H. Spenceley (1994). Control of biofilms in the food industry. In: Bacterial Biofilms and their control in medicine and Industry (J.T. Wimpenny, W.W. Nichols D. Stickler and H. Lappin-Scott, eds.), Cardiff: BioLine, pp. 163-168.

Hsiao, S.I.C. (1978). Effects of crude oil on the growth of Arctic marine phytoplankton. Environ. Pollut., 17: 93-108.

Hutchins, S.R., Sewell, G.W., Kovacs, D.A. and G.A. Smith (1991). Biodegradation of aromatic hydrocarbons by aquifer microorganisms under denitrifying conditions. Environ. Sci. Technol., 25: 68-76.

IPCC WGI (1990). Climate Change: The IPCC Scientific Assessment (R.A. Houghton et al., eds), Cambridge Univ. Press, Cambridge, UK.

Ismailov, N.M. (1985). Biodegradation of Oil Hydrocarbons in Soil inoculated with Yeasts. Microbiol., 54: 670-671.

Jafvert, C.T. and E.J. Weber (1992). Sorption of Ionizable Organic compounds to sediments and soils. EPA/600/S3-91/017.

Karydis, M. (1979). Short term effects of hydrocarbons on the photosynthesis and respiration of some phytoplankton species. Bot. Marine., 22: 281-285.

Kelly, I. and C.E. Cerniglia (1991). The Metabolism of Fluoranthene by a Species of Mycobacterium. J. Ind. Microb., 7: 19-26.

Kilbane, J.J., II and B.A. Bielaga (1990). Toward sulphur-free fuels. Chemtech, 745-747.

Kile, D.E. and C.T. Chiou (1990). Effect of some petroleum sulphonate surfactants on the apparent water solubility of organic compounds. Env. Sci. & Tech., 24: 205-208.

Koike, K., Ara, K., Adachi, S., Takigawa, P., Mori, H., Inoue, S., Kimura, Y. and S. Ito (1999). Regiospecific internal desaturation of aliphatic compounds by a mutant Rhodococcus strain. Appl. Environ. Microbiol., 65: 5636-5638.

Kolber, Z. and P.G. Falkowski (1993). Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol. Oceanogr., 38: 1646-1665.

Koning, M., Hupe, K., Luth, J-C., Cohrs, I., Quandt, C. and R. Stegmann (1998). Comparative investigations into the biological degradation of contaminants in fixed-bed and slurry reactors. In: Contaminated Soil 98, Thomas Telford, London, pp. 531-538.

Krompton, J. and J. Peene (1995). Possibility of net phytoplankton primary production in the turbid Schelde estuary (The Netherlands). Mar. Eco,Prog. Ser., 121: 249-259.

Kromkamp, J., Barrranguet, C. and J. Peene (1998). Determination of microphytobenthos PSIII quantum efficiency and photosynthetic activity by means of variable chlorophyll fluorescence. Mar. Ecol. Prog. Ser., 162: 45-55.

Lauff, G.H. (ed.) (1967). Estuaries. American Association for the Advancement of Science. Washington D.C., p. 757.

Lawrence, J.R., Swerhone, G.D.W. and Y.T.J. Kwong (1998). Natural attenuation of aqueous metal contamination by an algal mat. Can. J. Microbiol., 44: 825-832.

Lessard, P.E., Wilkinson, J.B., Prince, R.C., Bragg, J.R., Clark, J.R. and R.M. Atlas (1995). Bioremediation application in the cleanup of the 1989 Alaska oil spill. In: B.S. Schepart (ed.) Bioremediation of pollutants in soil and water. STP1235. ASTM Int., Philadelphia, pp. 207-225
.
Lin-Yen, Chin and A.J. Engel (1981). Hydrocarbon feedstock from algae hydrogenation. In: Biotechnology and Bioengineering Symposium lII (C.D. Scott, ed.), Biotech. and Bioeng., 23: 171-186.

Little, B.J., Wagner, P.A., Characklis, W.G. and W. Lee (1990). Microbial Corrosion. In: Biofilms (W.G. Characklis and KC. Marshall, eds.), Wiley, New York, pp. 635-670.

Liu, Z. Laha, Sand, R.G. and K. Luthy (1991). Surfactant solubility of PAH compounds in soil-water suspensions. Water Sci. & Tech., 23: 475-485.

Macintyre, H.L., Geider, R.J. and D.C. Miller (1996). Microphytobenthos: The ecological role of the “Secret garden” of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production. Estuaries, 19: 186-201.

Masters, M.J. and J.E. Zajic (1971). Myxotrophic growth of algae on hydrocarbon substrates. Dev. Ind. Microbiol., 12: 77-86.

Markham, A. (1995). The Poisoned Atmosphere. In: A Brief History of Pollution. Earthscan Publications Ltd. London.

Marín, M.M., Smits, T.H.M., Van Beilen, J.B. and F. Rojo (2001). The alkane hydroxylase gene of Burkholderia cepacia RR10 is under catabolite repression control. J. Bacteriol., 183: 4202-4209.

Meyers, J.S., Tsuchiya, H.M. and A.G. Fredrickson (1975). Dynamics of mixed populations having complementary metabolism. Biotech. Bioeng., 17: 1065-1081.

Miles, A. (1994). Heavy metals in Estuarine systems. PhD Thesis, University of Bristol, Bristol.

Morgan, P. and P.J. Watkinson (1990). Assessment of the potential for in situ biotreatment of hydrocarbon-contaminated soils. Water Sc. & Tech., 22: 63-68.

Mueller, J.G., Lantz, S.E., Blattmann, B.O. and P.J. Chapman (1991) Bench-Scale Evaluation of Alternative Biological Treatment Processes for the Remediation of Pentachlorophenol- and Creosote- Contaminated Materials: Slurry Phase Bioremediation. Envir. Sci. Tech., 25: 1055-1061.

Mueller, J.G., Resnick, S.M., Shelton, M.E. and P.H. Pitchard (1992). Effect of Inoculation on the Biodegradation of Weathered Prudhoe Bay Crude Oil. J. Ind. Microb., 10: 95-105.

Mueller, J.G., Lantz, S., Emiddaugh, D.P., Ross, D., Colvin, R.J. and P.H. Pitchard (in press). Strategy using Bioreactors and Specially-Selected Microorganisms for Bioremediation of Ground water Contaminated with Creosote and Pentachlorophenol. Enir. Sci. Tech.

Mueller, J.G., Cerniglia, C.E. and P.H. Pritchard (1996). Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons. In: Bioremediation: Principles and Application. (Crawford et al., eds.), Cambridge University Press. 1996.

Nance, J.M. (1991). Effects of oil/gas field produced water on the macrobenthic community in a small gradient estuary. Hydrobiologia., 220: 189-204.

National Research Council (1985). Oil in the Sea: Inputs, Fates, and Effects. National Academic Press, Washington. D.C.

National Research Council (1993). In situ bioremediation: When does it work? In: Principles of bioremediation. National Academy Press, pp. 16-46.

National Research Council (2003). Oil in the Sea III: Inputs, Fates, and Effects. National Academic Press, Washington. D.C.

Neff, J.M. and J.W. Anderson (1981). Response of Marine Animals to Petroleum and Specific Petroleum Hydrocarbons. Halstead Press, New York.

Nekodzuka, S., Toshiaki, N., Nakajima-Kambe, T., Nobura, N., Lu, J. and Y. Nakahara (1997). Specific desulphurization of debenzothiophene by Mycobacterium strain G3. Biocatal. Biotransform., 15: 21-27.

Nickel, J.C., Grants, S.K. and J.W. Costerton (1985a). Catheter-associated bacteriuria: An experimental study. Urol., 26: 369-375.

O’brien, P.Y. and P.S. Dixon (1976). The effects of oils and oil components on algae: A review. Br. Phycol. J., 11: 115-142.

Paterson, D.M. (1994). Microbial mediation of sediment structure and behaviour. In: Microbial Mats (Stal, L.J. and Caumette P., eds.). NATO ASI Series Vol. G35. Springer, Berlin, pp. 97-109.

Pennock, J.R. (1985). Chlorophyll distribution in the Delaware estuary: Regulation by light limitation. Estuary Coast Shelf Sci., 21: 711-725.

Pfaender, F.K. and E.N. Buckley III (1984). Effects of petroleum on microbial communities. In: Petroleum Microbiology. (R.M. Atlas, ed). Macmillan Publication C. New York, pp. 507-536.

Picer, M. and N. Picer (1992). Evaluation of modifications of the simple Spectrofluorimetry method for estimation of petroleum hydrocarbon levels in fresh and waste water samples. Chemosphere, 24(12): pp. 1825-1834.

Prince, R.C. (1992). Bioremediation of oil spills, with particular reference to the spill from the Exxon Valdez. In: Microbial Control of Pollution (J.C. Fry, G.M. Gad, R.A. Herbert C.W. Jones and I.A. Watson-Craik, eds). 48th symposium of the Society for General Microbiology. Univ. Cardiff. Cambridge Univ. Press, Cambridge, pp. 19-34.

Pritchard, P.H. (1992). Use of Inoculation in Bioremediation. Curr. Opinion Biotech., 3: 232-243.

Rao, P.S.C., Bellin, C.A. and M.L. Brusseau (1993). Coupling degradation of organic chemicals to sorption and transportation in soils and aquifers: paradigms and paradoxes. In: Sorption and degradation of pesticides and organic chemicals in soil. Madison, W.I.: Soil Society of America, pp. 1-26.

Ratafczak, A., Geibdorfer, W. and W. Hillen (1998). Alkane hydroxylase from Acinetobacter sp. strain ADP1 is encoded by alkM and belongs to a new family or bacterial integral-membrane hydrocarbon hydroxylase. Appl. Environ. Microbiol., 64: 1175-1179.

Rehmann, K., Hertkorn, N. and A.A. Kettrup (2001). Fluoranthene metabolism in Mycobacterium sp. strain KR20: identity of pathway intermediates during degradation and growth. Microbiology, 147: 2783-2794.

Reisfeld, A., Rosenburg, E. and D. Gutnick (1972). Microbial degradation of oil: Factors affecting oil dispersion in seawater by mixed and pure cultures. Appl. Microbiol., 24: 63-68.

Robichaux, T.J. and H.N. Myrick (1972). Chemical enhancement of the biodegradation of crude oil pollutants. J. Petrol. Technol., 24: 16-20.

Röling, Wilfred F.M., Miller, Micheal G., Jones, D. Martin, Lee, Kenneth, Daniel, Fabien, Swannell, Richard J.P. and Head, Ian M. (2002) Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl. Environ. Microbiol., 68(11): 5537-5548.

Rothemund, C. Amann, R., Klugbauer, S., Manz, W., Bieber, C., Schleifer, K-H. and P.W. Widerer (1996). Microflora of 2, 4-dichlorophenoxyacetic acid degrading biofilms on gas permeable membranes. Syst. Appl. Microbiol., 19: 608-615.

Samson, R., Greer, C.W., Hawkes, T., Desrochers, R., Nelson, C.H. and St. Cyr (1991). Monitoring an aboveground bioreactor at a petroleum refinery site using radiorespirometry and gene probes effects of winter conditions and clayey soil. In: Hinchee, R.E., Alleman, B.C., Hoeppel, R.E., Miller, R.N. (eds.), Hydrocarbon Bioremediation. Lewis Publishers, Baco Raton FL, pp. 329-333.

Shields, W.E., Goering, J.J. and D.W. Hood (1973). In: Crude oil phytotoxicity studies. Environ. Studies of Port Valdez (D.W. Hood, W.E. Shields and E.J. Kelly, eds.) Inst. of Marine Sci. University of Alaska, Fairbanks, pp. 413-446.

Sillitoe, R.H., Folk, R.L. and N. Saric (1994). Bacteria as mediators of copper sulphide enrichment during weathering. Science, 272: 1153-1155.

Smith, D.J. and G.J.C. Underwood (1998). Exopolymer production by intertidal epipelic diatoms. Limnol. Oceanogr., 43: 1578-1591.

Tranter, D.J. and W.S. Newell (1963). Enrichment experiments in the Indian Ocean. Deep Sea Res., 10: 1-9.

Treweek, Jo (1999). Identifying and predicting impacts. In: Ecological Impact Assessment. Blackwell Science, pp. 128-175.

Underwood, G.J.C. (1994). Seasonal and spatial variation in epipelic diatom assemblages in the Severn Estuary. Diat. Res., 9: 451-472.

Underwood, G.J.C. and J. Krompton (1999). Primary Production by Phytoplankton and Microphytobenthos in estuaries. Adv. Eco. Res., 29: 93-153.

Underwood, G.J.C. and D.J. Smith (1998). Predicting epipelic diatom exopolymer concentrations in intertidal sediments from sediment chlorophyll a. Microbiol. Eco., 35: 116-125.

U.S. Patent Office (1992a). Biological Remediation of Creosote- and similarly-contaminated Sites. J.G. Mueller and P.J. Chapmann, U.S. Patent No. 5132,224.

U.S. Patent Office (1992b). Arrangement for Cleaning Contaminated Ground Water. B. Bernchardt, U.S. Patent No. 5,082,053.

U.S. Patent Office (1992c). Arrangement for Driving out Volatile Impurities from Ground Water. B. Bernchardt, U.S. Patent No. 5,143,607.

U.S. Patent Office (1992d). Arrangement for Driving Volatile Impurities from Ground Water. B. Bernchardt, U.S. Patent No. 5,095,975.

Van Beilen, J.B., Panke, S., Lucchini, S., Franchini, A.G., Röthlisberger, M. and B. Witholt (2001). Analysis of Pseudomonas putida alkane degradation gene clusters and flanking insertion sequences: Evolution and regulation of the alk genes. Microbiology, 147: 1621-1630.

Walker, J.D., Calomoris, J.J., Herber, T.T.C. and R.R. Colwell (1976). Petroleum hydrocarbon degradation and growth potentials for Atlantic Ocean sediment bacteria. Mar. Biol., 34: 1-7.

Wang, X., Yu, X. and R. Bartha (1990). Effect of bioremediation on polycyclic aromatic Hydrocarbon residues in soil. Environ. Sci. & Tech., 24: 1086-1089.

Westlake, D.W.S. and F.D. Cook (1980). Petroleum biodegradation potential in Northern Puget Sound and Strait of Juan de Fuca. EPA-600/7-80-13, Klenv. Prot Agency, Washington DC.

Widdel, F. and R. Rabus (2001). Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr. Opin. Biotechnol., 12: 259-276.

Wimpenny, J.W.T., Lovitt, R.W. and J.P. Coombs (1983). Laboratory model systems for the investigation of spatially and temporally organized microbial ecosystems. In: Microbes in their Natural Environments. (J.H. Slater, R. Whittenbury and J.W.T. Wimpenny, eds.). Cambridge University Press, Cambridge, pp. 67-227.

Wimpenny, J. (2000). An overview of biofilms as functional communities. In: Community Structure and Cooperation in biofilms (D.G. Allison, P. Gilbert, H.M. Lappin-Scott and M. Wilson, eds.). 59th Symposium of the Society for General Microbiology. Univ, Exeter Sept. 2000. Cambridge Univ. Press.

Wofsy, S.C. (1983). A simple model to predict extinction coefficients and phytoplankton biomass in eutrophic waters. Limnol. Oceanogr., 28: 1144-1155.

Wolfraardt, G.M., Lawrence, J.R., Robarts, R.D. and D.E. Caldewell (1995). Bioaccumulation of the herbicide diclofop in extracellular polymers and its utilization by a biofilm community during starvation. Appl. Environ. Microbiol., 62: 152-157

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing