AccScience Publishing / AJWEP / Volume 21 / Issue 6 / DOI: 10.3233/AJW240077
RESEARCH ARTICLE

Soil Contamination in the Aftermath of Industrial Disasters: Risk Assessment and Crisis Management

Sonam Taneja1 Öznur Karaca2 A.K. Haritash1*
Show Less
1 Department of Environmental Engineering, Delhi Technological University, Delhi – 110042, India
2 Department of Geological Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
AJWEP 2024, 21(6), 101–109; https://doi.org/10.3233/AJW240077
Submitted: 15 March 2024 | Revised: 21 May 2024 | Accepted: 21 May 2024 | Published: 11 December 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

 Industrialisation has brought numerous benefits to society, but it has also led to environmental challenges, including the risk of industrial disasters. Industrial disasters pose significant risks to environmental health, with soil contamination emerging as a prevalent consequence. The resultant contamination renders affected sites barren and unsuitable for reuse, necessitating the treatment of such sites post-disaster to restore soil functionality and ecosystem. In this context, the review proposes an appropriate approach to carry out risk assessment studies of contaminated sites and to discuss strategies for the post-disaster management of contaminated soil. The review delves into the policy and legislative landscape governing industrial disaster management in India to facilitate progress in the remedial direction.

Keywords
Industrial disaster
disaster management
soil contamination
heavy metals
Conflict of interest
The authors declare they have no competing interests.
References

Al-Hamdan, A.Z. and K.R. Reddy. (2008). Transient behavior of heavy metals in soils during electrokinetic remediation. Chemosphere, 71(5): 860-871. doi:10.1016/j. chemosphere.2007.11.028

Ballesteros, S., Ma, J., Rincón, Rincón-Mora, B. and M.M. Jordán (2017). Vitrification of urban soil contamination by hexavalent chromium. Journal of Geochemical Exploration,174: 132-139. doi:10.1016/j.gexplo.2016.07.011

Banerjee, S., Ghosh, S., Jha, S., Kumar, S., Mondal, G., Sarkar, D., Datta, R., Mukherjee, A. and P. Bhattacharyya
(2023). Assessing pollution and health risks from chromite mine tailings contaminated soils in india by employing synergistic statistical approaches. Science of The Total Environment, 880: 163228. doi:10.1016/j. scitotenv.2023.163228.

Behera, R.K. and M.I. Hassan (2019). Regulatory interventions and industrial accidents: A case from India for ‘vision zero’ goals. Safety Science, 113: 415-424. doi:10.1016/j. ssci.2018.12.013

Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene,J., Park, J., Makino, T., Kirkham, M.B. and K. Scheckel
(2014). Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize?” Journal of  Hazardous Materials, 266: 141-166. doi:10.1016/j. jhazmat.2013.12.018.

Cameselle, C., Chirakkara, R.A. and K.R. Reddy (2013). Electrokinetic-enhanced phytoremediation of soils: Status and opportunities. Chemosphere, 93(4): 626-636. doi:10.1016/j.chemosphere.2013.06.029.

Chakraborty, B., Biswajit, B., Roy, S., Adhikary, P., Sengupta, D. and P.K. Shit (2021). Assessment of non-carcinogenic health risk of heavy metal pollution: Evidences from coal mining region of Eastern India. Environmental Science and Pollution Research, 28(34): 47275-47293. doi:10.1007/ s11356-021-14012-3

Deepika and A.K. Haritash (2023). Phytoremediation potential of ornamental plants for heavy metal removal from contaminated soil: A critical review. Horticulture, Environment, and Biotechnology. 64: 709-734. doi:10.1007/ s13580-023-00518-x.

Finnecy, E.E. (1987). Impacts on soils related to industrial activities: Part II—Incidental and accidental soil pollution. In: Scientific Basis for Soil Protection in the European Community, eds. H. Barth and P. L’Hermite. Dordrecht: Springer Netherlands, pp. 259-280. doi:10.1007/978-94- 009-3451-1_14.

Genchi, G., Sinicropi, M.S., Lauria, G., Carocci, A. and A. Catalano. (2020). The effects of cadmium toxicity. International Journal of Environmental Research and Public Health, 17(11): 3782. doi:10.3390/ijerph17113782.

Ghosh, S., Banerjee, S., Prajapati, J., Mandal, J., Mukherjee, A. and P. Bhattacharyya. (2023). Pollution and health risk assessment of mine tailings contaminated soils in India from toxic elements with statistical approaches. Chemosphere,324: 138267. doi:10.1016/j.chemosphere.2023.138267.

Guerriero, C., Papirio, S., Pirozzi, F., Ranzi, A., Loria Rebolledo, L.E. and V. Watson (2020). “Chapter 11 - Case Study: A Realistic Contaminated Site Remediation and Different Scenarios of Intervention.” In: Cost-Benefit Analysis of Environmental Health Interventions, ed. Carla Guerriero. Academic Press, pp. 229-256. doi:10.1016/ B978-0-12-812885-5.00011-1.

Gupta, A.K. and S.S. Nair (2012). Chemical (Industrial) Disaster Management, Trainer’s Module. National Institute of Disaster Management, New Delhi–110 2. https://www.researchgate.net/profile/Anil-Gupta-9/ publication/311371151_Chemical_Industrial_Disaster_Management/links/5842fb2108ae8e63e623c254/Chemical- Industrial-Disaster-Management.pdf (March 15, 2024).

Mark, K. (2018). Assessing disaster-related health risk: Appraisal for prevention. Prehospital and Disaster Medicine, 33: 317-325. doi:10.1017/S1049023X18000407

Khalid, S., Shahid, M., Niazi, N.K., Murtaza, B., Bibi, I. and C. Dumat (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182: 247-268. doi:10.1016/j. gexplo.2016.11.021

Liu, L., Wei, L., Song, W. and M. Guo (2018). Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of The Total Environment, 633: 206-219. doi:10.1016/j.scitotenv.2018.03.161

Narsimha, A., Chen, J. and H. Qian (2020). Spatial Characteristics of Heavy Metal Contamination and Potential Human Health Risk Assessment of Urban Soils: A Case Study from an Urban Region of South India. Ecotoxicology and Environmental Safety, 194: 110406.

NDMG (2007). National Disaster Management Guidelines: Chemical Disasters (Industrial). National Disaster Management Authority. Government of India.

Ojha, H. and A.J. Rahman (2023). Toxic industrial chemicals: An emerging disaster threat. In: Fifth World Congress on Disaster Management: Volume V, Routledge, pp. 410-418. https://www.taylorfrancis.com/ chapters/edit/10.4324/9781003342090-43/toxic-industrial- chemicals-emerging-disaster-threat-himanshu-ojha-afreen- jahan-rahman (March 15, 2024).

Pavesi, T. and J.C. Moreira (2020). Mechanisms and individuality in chromium toxicity in humans. Journal of Applied Toxicology, 40(9): 1183-1197. doi:10.1002/ jat.3965

Popescu, M., Rosales, E., Sandu, C., Meijide, J., Pazos, M., Lazar, G. and M.A. Sanromán (2017). Soil flushing and simultaneous degradation of organic pollutants in soils by electrokinetic-Fenton treatment. Process Safety and Environmental Protection, 108: 99-107. doi:10.1016/j. psep.2016.03.012

Reddy, K.R., Claudio, C. and P. Ala (2010). Integrated electrokinetic-soil flushing to remove mixed organic and metal contaminants. Journal of Applied Electrochemistry,40(6): 1269-1279. doi:10.1007/s10800-010-0102-1.

Shen, Z., Jin, F., O’Connor, D. and D. Hou (2019). Solidification/stabilization for soil remediation: An old technology with new vitality. Environmental Science & Technology, 53(20): 11615-11617. doi:10.1021/acs. est.9b04990

Silva, K.N.O., Suelya, Paiva, S.M., Souza, F.L., Silva,D.R., Martínez-Huitle, C.A. and E.V. Santos (2018). Applicability of electrochemical technologies for removing and monitoring Pb2+ from soil and water. Journal of Electroanalytical Chemistry, 816: 171-178. doi:10.1016/j. jelechem.2018.03.051.

Siyar, R., Ardejani, F.D., Farahbakhsh, M., Norouzi, P., Yavarzadeh, M. and S. Maghsoudy (2020). Potential of vetiver grass for the phytoremediation of a real multi- contaminated soil, assisted by electrokinetic. Chemosphere,246: 125802. doi:10.1016/j.chemosphere.2019.125802

Sriramachari, S. (2004). The Bhopal gas tragedy: An environmental disaster. Current Science, 86(7): 905-920.

Tajudin, S.A.A., Azmi, M.A.M. and A.T.A. Nabila (2016). Stabilization/solidification remediation method for contaminated soil: A review. IOP Conference Series:Materials Science and Engineering, 136(1): 012043.  doi:10.1088/1757-899X/136/1/012043

Taneja, S., Karaca, O. and A.K. Haritash. (2023). Treatment of Pb-contaminated soil by electrokinetics: Enhancements by varying voltage, chelant, and electrode material. Journal of Geochemical Exploration, 250: 107240. doi:10.1016/j.gexplo.2023.107240

Taneja, S., Karaca, O. and A.K. Haritash (2024). Electrokinetic remediation: Past experiences and future roadmap for sustainable remediation of metal-contaminated soils. Journal of Geochemical Exploration, 259: 107437. 
doi:10.1016/j.gexplo.2024.107437.

Taneja, S., Yadav, S., Pipil, H., Karaca, O. and A.K. Haritash (2023). Soil–Water Interactions and Arsenic Enrichment in Groundwater.” In: Hydrogeochemistry of Aquatic Ecosystems, John Wiley & Sons, Ltd, pp. 97-120. doi:10.1002/9781119870562.ch5.

Wcisło, E. (2021). Health Risk Assessment in Contaminated Site Management. In: Integrated environmental 
management of land and soil in European urban areas (pp.116-135)Edition: WORKS & STUDIES (PRACE I STUDIA); Institute of Environmental Engineering of the Polish Academy of Sciences, pp. 116-135.

Wu, J., Jia, R., Xuan, H., Zhang, D., Zhang, G. and Y. Xiao (2022). Priority soil pollution management of 
contaminated site based on human health risk assessment: A case study in Southwest China. Sustainability, 14(6):3663. doi:10.3390/su14063663

Wuana, R.A. and F.E. Okieimen (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks  and best available strategies for remediation. International Scholarly Research Notices, 2011: 402647. https://downloads.hindawi.com/archive/2011/402647.pdf

Yeung, A.T., Cheng-non H. and R.M. Menon. (1997). Physicochemical soil-contaminant interactions during 
electrokinetic extraction. Journal of Hazardous Materials, 55(1): 221-237. doi:10.1016/S0304-3894(97)00017-4
Zhang, S., Han, Y., Peng, J., Chen, Y., Zhan, L. and J. Li (2023). Human health risk assessment for contaminated 
sites: A retrospective review. Environment International, 171: 107700. doi:10.1016/j.envint.2022.107700

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing