AccScience Publishing / AJWEP / Volume 21 / Issue 4 / DOI: 10.3233/AJW240041
RESEARCH ARTICLE

Assesement of Surface Water Availability of Kathmandu Valley Using SWAT Model

Madan Pokhrel3* Narendra Shakya1 Manoj Lamichhane2
Show Less
1 Department of Civil Engineering, Pulchowk Campus, Tribhuvan University, Kathmandu 44700
2 Department of Civil Engineering, Advanced College of Engineering and Management, Tribhuvan University, Kathmandu 44700
3 Department of Civil Engineering, Paschimanchal Campus, Tribhuvan University, Pokhara 33700
AJWEP 2024, 21(4), 1–14; https://doi.org/10.3233/AJW240041
Submitted: 1 June 2023 | Revised: 1 June 2023 | Accepted: 1 June 2023 | Published: 25 July 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The study used the Soil and Water Assessment Tool (SWAT) model to analyse the surface water availability in the Kathmandu Valley. The model was calibrated and validated at Khokana station of basin area 592 km2 for the period from 2000 to 2015. To test the model’s performance for smaller subbasins, it was validated at Sundarijal station of basin area 16 km2. The daily runoff simulation statistics indicated that the model’s performance was satisfactory and the model effectively captured the runoff trend for the entire basin and subbasin catchment areas. This study demonstrates that the model can be adopted for assessing stream flow within the basin by selecting appropriate parameter values. The calibrated and validated model was subsequently applied to determine the surface water availability in surrounding mountainous, forested regions less affected by urbanisation, by setting up the model at 66 watersheds. The results indicate that the upper reaches of the Bagmati River basin and its tributary, the Nakkhu River, possess substantial surface water resources that can be utilised to alleviate water stress in the valley.

Keywords
Water scarcity
surface water availability
SWAT
hydrological modelling
References

Abbaspour, K.C., Vejdani, M. and S. Haghighat (2015).  SWAT Calibration and Uncertainty Programs. Eawag:  Swiss Federal Institute of Aquatic Science and Techology.

Abbaspour, K.C., Yang, J., Maximov, I., Siber, R., Bogner,  K., Mieleitner, J., Zobrist, J. and R. Srinivasan (2007).  Modelling hydrology and water quality in the prealpine/alpine Thur watershed using SWAT. Journal of  Hydrology, 333(2-4): 413-430. https://doi.org/10.1016/j. jhydrol.2006.09.014

Altinbilek, D. (2002). The role of dams in development.  Water Science and Technology, 45(8): 169-180. https:// doi.org/10.2166/wst.2002.0172

Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C.,  White, M. J., Srinivasan, R., Santhi, C., Harmel, R.D.,  Griensven, A. van, Liew, MW.V., Kannan, N. and M.K. Jha (2012). SWAT: Model use, calibration, and validation.  Transactions of the ASABE, 55(4): 1491-1508. https://doi. org/10.13031/2013.42256

Baker, T.J. and S.N. Miller (2013). Using the soil and water  assessment tool (SWAT) to assess land use impact on  water resources in an East African watershed. Journal  of Hydrology, 486: 100-111. https://doi.org/10.1016/j. jhydrol.2013.01.041

Bal, M., Dandpat, A.K. and B. Naik (2021). Hydrological  modeling with respect to impact of land-use and landcover change on the runoff dynamics in Budhabalanga  river basing using ArcGIS and SWAT model. Remote  Sensing Applications: Society and Environment, 23: 100527. https://doi.org/10.1016/j.rsase.2021.100527

Bera, S. and R. Maiti (2021). Assessment of water availability  with SWAT model: A study on Ganga River. Journal of  the Geological Society of India, 97(7): 781-788. https:// doi.org/10.1007/s12594-021-1760-9

Bhatta, B., Shrestha, S., Shrestha, P.K. and R. Talchabhadel  (2019). Evaluation and application of a SWAT model to  assess the climate change impact on the hydrology of the  Himalayan River Basin. CATENA, 181: 104082. https:// doi.org/10.1016/j.catena.2019.104082

Devkota, N. and N.M. Shrestha (2021). Development of  rainfall – runoff model for extreme storm events in the  Bagmati River Basin, Nepal. Journal of Engineering Issues  and Solutions, 1(1): 158-173. https://doi.org/10.3126/joeis. v1i1.36835

Gupta, H.V., Sorooshian, S. and P.O. Yapo (1999). Status of  automatic calibration for hydrologic models: Comparison  with multilevel expert calibration. Journal of Hydrologic  Engineering, 4(2): 135-143. https://doi.org/10.1061/ (ASCE)1084-0699(1999)4:2(135)

Guug, S.S., Abdul-Ganiyu, S. and R.A. Kasei (2020).  Application of SWAT hydrological model for assessing  water availability at the Sherigu catchment of Ghana  and Southern Burkina Faso. HydroResearch, 3: 124-133.  https://doi.org/10.1016/j.hydres.2020.10.002

Jordan, S., Quinn, J., Zaniolo, M., Giuliani, M. and A.  Castelletti (2022). Advancing reservoir operations  modelling in SWAT to reduce socio-ecological tradeoffs.  Environmental Modelling & Software, 157: 105527.  https://doi.org/10.1016/j.envsoft.2022.105527

Kc, S., Shrestha, S., Ninsawat, S. and S. Chonwattana (2021).  Predicting flood events in Kathmandu Metropolitan  City under climate change and urbanisation. Journal of  Environmental Management, 281: 111894. https://doi. org/10.1016/j.jenvman.2020.111894

KUKL (2019). Kathmandu Upatyaka Khanepani Limited  Annual Report 2076. KUKL. http://kathmanduwater. org/wp-content/uploads/2021/03/Annual%20Report%20 2077.pdf

Lamichhane and Shakya (2019). Integrated assessment of  climate change and land use change impacts on hydrology  in the Kathmandu Valley watershed, Central Nepal. Water,  11(10): 2059. https://doi.org/10.3390/w11102059

Molden, D. (2020). Scarcity of water or scarcity of  management? International Journal of Water Resources  Development, 36(2-3): 258-268. https://doi.org/10.1080/0 7900627.2019.1676204

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L.,  Harmel, R.D. and T.L. Veith, (2007). Model evaluation  guidelines for systematic quantification of accuracy in  watershed simulations. Transactions of the ASABE, 50(3): 885-900. https://doi.org/10.13031/2013.23153

Nazari-Sharabian, M., Taheriyoun, M. and M. Karakouzian  (2020). Sensitivity analysis of the DEM resolution and  effective parameters of runoff yield in the SWAT model:  A case study. Journal of Water Supply: Research and  Technology-Aqua, 69(1): 39-54. https://doi.org/10.2166/ aqua.2019.044

Neitsch, S.L., Arnold, J.G., Kiniry, J.R. and J.R. William  (2005). Soil and Water Assessment Tool Theoretical  Documentation Version 2005. Soil and Water Research  Laboratory, Agricultural Research Service.

Pokhrel, M. and N.M. Shakya (2021). Assessment of future  land use/cover change of Kathmandu Valley using two  models of land change. IOE Graduate Conference, 10: 463-471.

Saade, J., Atieh, M., Ghanimeh, S. and G. Golmohammadi  (2021). Modeling impact of climate change on surface  water availability using SWAT model in a semi-arid basin:  Case of El Kalb River, Lebanon. Hydrology, 8(3): 134.  https://doi.org/10.3390/hydrology8030134

Sharma, A., Patel, P.L. and P.J. Sharma (2022). Influence  of climate and land-use changes on the sensitivity of  SWAT model parameters and water availability in a  semi-arid river basin. CATENA, 215: 106298. https://doi. org/10.1016/j.catena.2022.106298

Thapa, B.R., Ishidaira, H., Bui, T.H. and N.M. Shakya  (2016). Evaluation of water resources in mountainous  region of Kathmandu Valley using high resolution satellite  precipitation product. Journal of Japan Society of Civil  Engineers, Ser. G (Environmental Research), 72(5): I_27-I_33. https://doi.org/10.2208/jscejer.72.I_27

Thapa, B.R., Ishidaira, H., Pandey, V.P. and N.M. Shakya  (2017). A multi-model approach for analyzing water  balance dynamics in Kathmandu Valley, Nepal. Journal  of Hydrology: Regional Studies, 9: 149-162. https://doi. org/10.1016/j.ejrh.2016.12.080

Thavhana, M.P., Savage, M.J. and M.E. Moeletsi (2018).  SWAT model uncertainty analysis, calibration and  validation for runoff simulation in the Luvuvhu River  catchment, South Africa. Physics and Chemistry of  the Earth, Parts A/B/C, 105: 115-124. https://doi. org/10.1016/j.pce.2018.03.012

Udmale, P., Ishidaira, H., Thapa, B. and N. Shakya (2016).  The status of domestic water demand: Supply deficit in  the Kathmandu Valley, Nepal. Water, 8(5): 196. https:// doi.org/10.3390/w8050196

Winchell, M., Srinivasan, R. and M.D. Luzio (2008).  ARCSWAT 2.1 Interface For SWAT2005 User’s Guide.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing