AccScience Publishing / AJWEP / Volume 20 / Issue 6 / DOI: 10.3233/AJW230078
RESEARCH ARTICLE

Hydrolysis of Fruit Waste to Reduce Sugars Using  Sulphonated Magnetic Carbonaceous Catalyst

Hemalatha Manivannan1* Brinda Lakshmi Anguraj2 G. Venkatesan3
Show Less
1 Department of Chemical Engineering, Saveetha Engineering College, Thandalam, Chennai – 602105, India
2 Department of Chemical Engineering, AC Tech, Anna University,Chennai – 600025, India
3 Department of Civil Engineering, Saveetha Engineering College, Thandalam, Chennai – 602105, India
AJWEP 2023, 20(6), 45–51; https://doi.org/10.3233/AJW230078
Submitted: 22 May 2023 | Revised: 23 July 2023 | Accepted: 23 July 2023 | Published: 27 November 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The sulphonated magnetic carbonaceous catalyst (Fe3O4@AC-SO3H) was effectively synthesised by functionalising the sulphonic acid group (–SO3H) on the surface of the core-shell structure of magnetic nanoparticle grafted activated carbon and analysed by SEM, XRD, and FT-IR. The As-prepared catalyst may aggressively hydrolyse biomass to sugar in a shorter reaction time. Hydrolysis factors such as catalyst dose, reaction temperature, and duration all had a significant impact on the hydrolysis of pomegranate peel waste. The catalyst could liberate 46% of TRS in 2 hours at 140°C from acid-pretreated pomegranate peel waste. This catalyst can be easily regenerated using a magnet and reused for up to three cycles with improved stability.

Keywords
Pretreatment
hydrolysis
fruit waste
total reducing sugars
sulphonated magnetic carbonaceous catalyst
Conflict of interest
The authors declare they have no competing interests.
References

Abid, M., Cheikhrouhou, S., Renard, C.M.G.C., Bureau,  S., Cuveliar, G., Attia, H. and M.A. Ayadi (2017).  Characterization of pectins extracted from pomegranate  peel and their gelling properties. Food Chem, 215: 318- 325.

Ansanay, Y., Kolar, P., Sharma-Shivappa, R., Cheng, J., Park,  S. and C. Arellano (2017). Pre-treatment of biomasses  using magnetised sulfonic acid catalysts. J Agric Eng,  48: 117-122.

Demiray, E., Karatay, S.E. and G. Dönmez (2019).  Improvement of bioethanol production from pomegranate  peels via acidic pretreatment and enzymatic hydrolysis.  Environ Sci Pollut Res, 26: 29366-29378.

Deng, A., Lin, Q., Yan, Y., Li, H., Ren, J., Liu, C. and R. Sun  (2016). A feasible process for furfural production from the  pre-hydrolysis liquor of corncob via biochar catalysts in  a new biphasic system. Bioresour Technol, 216: 754-760.

Fang, Z., Zhang, F., Zeng, H.Y. and F. Guo (2011). Production  of glucose by hydrolysis of cellulose at 423K in the  presence of activated hydrotalcite nanoparticles. Bioresour  Technol, 102: 8017-8021. 

Guo, H., Qi, X., Li, L. and R.L. Smith (2012). Hydrolysis  of cellulose over functionalized glucose-derived carbon  catalyst in ionic liquid. Bioresour Technol, 116: 355-359. Guo, H., Lian, Y., Yan, L., Qi, X. and R.L. Smith (2013).  Cellulose-derived superparamagnetic carbonaceous solid  acid catalyst for cellulose hydrolysis in an ionic liquid or  aqueous reaction system. Green Chem, 15: 2167-2174.

Hemalatha, M. and A. Brinda Lakshmi (2020). Catalytic  hydrolysis of fruit waste using magnetic carbon acid  catalyst for bioethanol production. Waste and Biomass  Valorization, 12: 971-983.

Hu, L., Wu, Z., Xu, J., Zhou, S. and G. Tang (2016). Efficient  hydrolysis of cellulose over a magnetic lignin-derived solid  acid catalyst in 1-butyl-3-methylimidazolium chloride.  Korean J Chem Eng, 33: 1232-1238.

Intaramas, K., Jonglertjunya, W., Laosiripojana, N. and C.  Sakdaronnarong (2018). Selective conversion of cassava  mash to glucose using solid acid catalysts by sequential  solid state mixed-milling reaction and thermo-hydrolysis.  Energy, 149: 837-847.

Khan, A.S., Man, Z., Bustam, M.A., Kait, C.F., Nasrullah,  A., Ullah, Z., Sarwono, A., Ahmad, P. and N. Muhammad  (2018). Dicationic ionic liquids as sustainable approach for  direct conversion of cellulose to levulinic acid. J Clean  Prod, 170: 591-600.

Koukabi, N., Kolvari, E., Zolfigol, M.A., Khazaei, A.,  Shaghasemi, B.S. and B. Fasahati (2012). A magnetic  particle-supported sulfonic acid catalyst: Tuning catalytic  activity between homogeneous and heterogeneous  catalysis. Adv Synth Catal, 354: 2001-2008.

Lai, D.M., Deng, L., Guo, Q.X. and Y. Fu (2011). Hydrolysis  of biomass by magnetic solid acid. Energy Environ Sci,  4: 3552-3557. 

Li, H.X., Zhang, X., Wang, Q., Yang, D., Cao, Q. and L.  Jin (2020). Study on the hydrolysis of cellulose with the  regenerable and recyclable multifunctional solid acid as  a catalyst and its catalytic hydrolytic kinetics. Cellulose,  27: 285-300.

Nata, I.F., Irawan, C., Mardina, P. and C.K. Lee (2015).  Carbon-based strong solid acid for cornstarch hydrolysis.  J Solid State Chem, 230: 163-168.

Nizami, A.S., Rehan, M., Waqas, M., Naqvi, M., Ouda,  O.K.M., Shahzad, K., Miandad, R., Khan, M.Z., Syamsiro,  M., Ismail, I.M.I. and D. Pant (2017). Waste biorefineries:  Enabling circular economies in developing countries.  Bioresour Technol, 241: 1101-1117.

Peng, X., Shen, S., Wang, C., Li, T., Li, Y., Yuan, S. and X.  Wen (2017). Influence of relative proportions of cellulose  and lignin on carbon-based solid acid for cellulose  hydrolysis. Mol Catal, 442: 133-139. 

Qiu, M., Bai, C., Yan, L., Shen, F. and X. Qi (2018). Efficient  mechanochemical-assisted production of glucose from  cellulose in aqueous solutions by carbonaceous solid acid  catalysts. ACS Sustain Chem Eng, 6: 13826-13833.

Ren, H., Zhou, Y. and L. Liu (2013). Selective conversion of  cellulose to levulinic acid via microwave-assisted synthesis  in ionic liquids. Bioresour Technol, 129: 616-619.

Shadbahr, J., Khan, F. and Y. Zhang (2017). Kinetic modeling  and dynamic analysis of simultaneous saccharification and  fermentation of cellulose to bioethanol. Energy Convers  Manag, 141: 236-243.

Shen, S., Wang, C., Cai, B., Li, H., Han, Y., Wang, T. and  H. Qin (2013). Heterogeneous hydrolysis of cellulose into  glucose over phenolic residue-derived solid acid. Fuel,  113: 644-649. 

Su, T.C., Fang, Z., Zhang, F., Luo, J. and X.K. Li (2015).  Hydrolysis of selected tropical plant wastes catalyzed by  a magnetic carbonaceous acid with microwave. Sci Rep, 5: 1-14.

Su, T., Zeng, J., Gao, H., Jiang, L., Bai, X., Zhou, H. and F.  Xu (2020). One-pot synthesis of a chemically functional  magnetic carbonaceous acid catalyst for fermentable  sugars production from sugarcane bagasse. Fuel, 262:  116512.

Talekar, S., Patti, A.F., Vijayraghavan, R. and A. Arora  (2018). An integrated green biorefinery approach towards  simultaneous recovery of pectin and polyphenols coupled  with bioethanol production from waste pomegranate peels.  Bioresour Technol, 266: 322-334. 

Tian, J., Wang, J., Zhao, S., Jiang, C., Zhang, X. and X.  Wang (2010). Hydrolysis of cellulose by the heteropoly  acid H3PW12O40. Cellulose, 17: 587-594.

Tizazu, B.Z. and V.S. Moholkar (2018). Kinetic and  thermodynamic analysis of dilute acid hydrolysis of  sugarcane bagasse. Bioresour Technol, 250: 197-203. 

Tong, D.S., Xia, X., Luo, X.P., Wu, L.M., Lin, C.X., Yu,  W.H., Zhou, C.H. and Z.K. Zhong (2013). Catalytic  hydrolysis of cellulose to reducing sugar over acidactivated montmorillonite catalysts. Appl Clay Sci, 74:  147-153.

Wang, N., Zhang, J., Wang, H., Li, Q., Wei, S. and D. Wang  (2014). Effects of metal ions on the hydrolysis of bamboo  biomass in 1-butyl-3-methylimidazolium chloride with  dilute acid as catalyst. Bioresour Technol, 173: 399-405.

Xiong, Y., Zhang, Z., Wang, X., Liu, B. and J. Lin (2014).  Hydrolysis of cellulose in ionic liquids catalyzed by a  magnetically recoverable solid acid catalyst. Chem Eng  J, 235: 349-355.

Yang, Z., Huang, R., Qi, W., Tong, L., Su, R. and Z. He  (2015). Hydrolysis of cellulose by sulfonated magnetic  reduced graphene oxide. Chem Eng J, 280: 90-98.

Yin, S., Sun, J., Liu, B. and Z. Zhang (2015). Magnetic  material grafted cross-linked imidazolium-based polyionic  liquids: An efficient acid catalyst for the synthesis of  promising liquid fuel 5-ethoxymethylfurfural from  carbohydrates. J Mater Chem A, 3: 4992-4999.

Yuan, Z., Zhang, Z., Zheng, J. and J. Lin (2015). Efficient  synthesis of promising liquid fuels 5-ethoxymethylfurfural  from carbohydrates. Fuel, 150: 236-242.

Zhang, F., Tian, X., Shah, M. and W. Yang (2017). Synthesis  of magnetic carbonaceous acids derived from hydrolysates  of Jatropha hulls for catalytic biodiesel production. RSC  Advances, 7: 11403-11413.

Zhang, F. and Z. Fang (2012). Hydrolysis of cellulose to  glucose at the low temperature of 423K with CaFe2O4- based solid catalyst. Bioresour Technol, 124: 440-445. 

Zhao, S., Cheng, M., Li, J., Tian, J. and X. Wang (2011). One  pot production of 5-hydroxymethylfurfural with high yield  from cellulose by a Brønsted-Lewis-surfactant-combined  heteropolyacid catalyst. Chem Commun, 47: 2176-2178.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing