AccScience Publishing / AJWEP / Volume 20 / Issue 6 / DOI: 10.3233/AJW230076
RESEARCH ARTICLE

Enhanced High Activity for Removal and Adsorption  Process of Cationic Dye by Using Active Nanocomposite  Surface: Reactivation and Isotherm Models

Aseel M. Aljeboree1* Ayad F. Alkaim1
Show Less
1 Department of Chemistry, College of Science for Women, University of Babylon, Babylon, Iraq
AJWEP 2023, 20(6), 29–35; https://doi.org/10.3233/AJW230076
Submitted: 11 July 2023 | Revised: 4 August 2023 | Accepted: 4 August 2023 | Published: 27 November 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

In this research, a new low-cost material was synthesised multi carbon nanotube/Zinc oxide nanocomposite (MWCNT/ZnO), nanocomposite used as a sorbent for dye removal from industrial Water treatment, as like cationic model Maxillon blue (GRL) dye in order to find the adsorption mechanism of adsorption methods were studied via FESEM, TEM, and BET. Two models of Freundlich and Langmuir isotherm were studied, and according to the data, it was established that it conforms to the isotherm Freundlich estimation on the value of R2 > 0.9798. The reactivation and re-use of (MWCNT/ZnO) nanocomposite were performed by using water in the GRL dye up to Cycle 5 under the best conditions. After the 3 cycles of using (MWCNT/ZnO) nanocomposite, the efficiency is still significant (>80%) and it appears that the (MWCNT/ZnO) nanocomposite is a probable re-newable absorber, moreover, the effect of ionic strength increases the solubility of the GRL dye in aqueous medium. Thus, when salt is added, the aqueous solution decreases the removal percentage. Also, a comparison among several surfaces (ZnONPs, MWCNT, MWCNT/ZnO), found MWCNT/ZnO nanocomposite the best surfaces to remove GRL dye.

Keywords
Adsorption
removal
maxillon blue (GRL) dye
isotherm
zinc oxide
nanocomposite
Conflict of interest
The authors declare they have no competing interests.
References

Abdulrazzak, F.H., Jawad, M.A., Alkadir, O.K.A and A.F.  Alkaim (2021). Antimicrobial Activity of Ag:ZnO/ MWCNT Against Cinetobacter baumannii. Journal of  Nanostructures, 11(2): 317-322.

Abid Alradaa, Z.A. and Z.M. Kadam (2021). Preparation,  characterization and prevention of biological pollution of  4-(4-benzophenylazo) pyrogallol and their metal complexes.  IOP Conference Series: Earth and Environmental Science,  790(1): 012038.

Abu-Zurayk, R.A., Al Bakain, R.Z., Hamadneh, I. and  A.H. Al-Dujaili (2015). Adsorption of Pb(II), Cr(III)  and Cr(VI) from aqueous solution by surfactantmodified diatomaceous earth: Equilibrium, kinetic and  thermodynamic modeling studies. International Journal  of Mineral Processing, 140: 79-87.

Ahlawat, W., Kataria, N.,, Dilbaghi, N., Hassan, A.A., Kumar,  S. and K.-H. Kim (2019). Carbonaceous nanomaterials as  effective and efficient platforms for removal of dyes from  aqueous systems. Environmental Research, 181: 108904.

Al-Bayati, R.A. (2020). Adsorption-desorption isotherm of  one of antidiabetic drug from aqueous solutions on some  pharmaceutical adsorbents. Eur. J. Sci. Res., 40: 580-588.

Aljeboree, A.M., Alshirifi, A.N. and A.F. Alkaim (2019).  Removal of pharmaceutical amoxicillin drug by using (Cnt)  decorated clay/Fe2O3 micro/nanocomposite as effective  adsorbent: Process optimization for ultrasound‐assisted  adsorption. International Journal of Pharmaceutical  Research, 11(4): 80-86.

Aljeboree, A.M., Hussein, F.H. and A.F. Alkaim (2019).  Removal of textile dye (methylene blue mb) from  aqueous solution by activated carbon as a model (corncob source waste of plant): As a model of environmental  enhancement. Plant Archives, 19: 906-909.

Ansari, F., Ghaedi, M., Taghdiri, M. and A. Asfaram (2016).  Application of ZnO nanorods loaded on activated carbon  for ultrasonic assisted dyes removal: Experimental design  and derivative spectrophotometry method. Ultrasonics  Sonochemistry, 33: 197-209.

Attia, A.A., Girgis, B.S. and N.A. Fathy (2008). Removal of  methylene blue by carbons derived from peach stones by  H3PO4 activation: Batch and column studies. Dyes and  Pigments, 76(1): 282-289.

Awwad, H.M., Alkaim, A.F. and M.N. Al-Baiati (2019).  Adsorption of maxilon blue (GRL) from aqueous solutions  by using a novel nano-composite polymer. IOP Conference  Series: Materials Science and Engineering, 571: 012095.

Bader, A.T., Zaied, A.M., Aljeboree, A.M. and A.F. Alkaim  (2019). Removal of methyl violet (MV) from aqueous  solutions by adsorption using activated carbon from pine  husks (plant waste sources). Plant Archives, 19: 898-901.

Dil, E.A., Ghaedi, M., Ghaedi, A., Asfaram, A., Goudarzi,  A., Hajati, S., Soylak, M., Agarwal, S. and V.K. Gupta  (2016). Modeling of quaternary dyes adsorption onto  ZnO–NR–AC artificial neural network: Analysis by  derivative spectrophotometry. Journal of Industrial and  Engineering Chemistry, 34: 186-197.

Ghaedi, M., Ghayedi, M., Kokhdan, S.N., Sahraei, R. and  A. Daneshfar (2013). Palladium, silver, and zinc oxide  nanoparticles loaded on activated carbon as adsorbent  for removal of bromophenol red from aqueous solution.  Journal of Industrial and Engineering Chemistry, 19(4): 1209-1217.

Hosseinzadeh, S., Hosseinzadeh, H., Pashaei, S. and Z.  Khodaparast (2018). Synthesis of magnetic functionalized  MWCNT nanocomposite through surface RAFT copolymerization of acrylic acid and N-isopropyl acrylamide  for removal of cationic dyes from aqueous solutions. Ecotoxicology and Environmental Safety, 161: 34-44.

Kalantary, R.R., Farzadkia, M, Kermani, M. and M.  Rahmatinia (2018). Heterogeneous electro-Fenton process  by Nano-Fe3O4 for catalytic degradation of amoxicillin:  Process optimization using response surface methodology.  Journal of Environmental Chemical Engineering, 6(4): 4644-4652.

Karimi, R., Yousefi, F., Ghaedi, M. and Z. Rezaee (2019).  Comparison the behavior of ZnO–NP–AC and Na,  K doped ZnO–NP–AC for simultaneous removal of  crystal violet and quinoline yellow dyes: Modeling and  optimization. Polyhedron, 170: 60-69.

Khedaer, Z., Ahmed, D.S. and S.M.H. Al-Jawad (2021).  Investigation of morphological, optical, and antibacterial  properties of hybrid ZnO-MWCNT prepared by sol-gel.  Journal of Applied Sciences and Nanotechnology, 1(2): 66-77.

Konicki, W., Pełech, I., Mijowska, E. and I. Jasińska (2012).  Adsorption of anionic dye Direct Red 23 onto magnetic  multi-walled carbon nanotubes-Fe3C nanocomposite:  Kinetics, equilibrium and thermodynamics. Chemical  Engineering Journal, 210: 87-95.

Langmuir, I. (1918). The adsorption of gases on planesurfaces of glass, mica and platinum. Journal of the  American Chemical Society, 40(9): 1361-1403.

Leudjo Taka, A., Fosso-Kankeu, E., Pillay, K. and X.  Yangkou Mbiand (2020). Metal nanoparticles decorated  phosphorylated carbon nanotube/cyclodextrin nanosponge  for trichloroethylene and Congo red dye adsorption  from wastewater. Journal of Environmental Chemical  Engineering, 8: 103602.

Mashkour, M.S., Al-Kaim, A.F., Ahmed, L.M. and F.H.  Hussein (2011). Zinc oxide assisted photocatalytic  decolorization of reactive red 2 dye. International Journal  of Chemical Sciences, 9(3): 969-979.

Mosaa, Z. A., Bader, A.T., Aljeboree, A.M. and A.F. Alkaim  (2019). Adsorption and removal of textile dye (methylene  blue MB) from aqueous solution by activated carbon  as a model (apricot stone source waste) of plant role in  environmental enhancement. Plant Archives, 19: 910-914.

Pashaei-Fakhri, S., Peighambardoust, S.J., Rauf Foroutan,  R., Arsalani, N. and B. Ramavandi (2021). Crystal violet  dye sorption over acrylamide/graphene oxide bonded  sodium alginate nanocomposite hydrogel. Chemosphere,  270: 129419.

Radia, N.D., Kamona, S.M.H., Jasem, H., Abass, R.R.,  Izzat, S.E., Ali, M.S., Ghafel, S.T. and A.M. Aljeboree  (2022). Role of hydrogel and study of its high-efficiency  to removal streptomycin drug from aqueous solutions.  International Journal of Pharmaceutical Quality  Assurance, 13(2): 160-163.

Radia, N.D., Mahdi, A.B., Mohammed, G.A., Sajid, A.,  Altimari, U.S., Shams, M.A., Aljeboree, A.M. and F.H.  Abdulrazzak (2022). Removal of rose bengal dye from  aqueous solution using low cost (SA-g-PAAc) hydrogel:  Equilibrium and kinetic study. International Journal of  Drug Delivery Technology, 12(3): 957-960.

Shaw, R., Mittal, T., Tiwari, S. and S.K. Tiwari (2018).  Enhanced adsorption at ZnO nanoflakes@ zeolite core  shell interface: A study of changing adsorption dynamics.  Journal of Environmental Chemical Engineering, 6(1): 1424-1433.

Somu, P. and S. Paul (2018). Casein based biogenic‐ synthesized zinc oxide nanoparticles simultaneously  decontaminate heavy metals, dyes, and pathogenic  microbes: A rational strategy for wastewater treatment.  Journal of Chemical Technology & Biotechnology, 93(10): 2962-2976.

Stefaniuk, I., Cieniek, B. and I. Rogalska (2019). Magnetic  properties of ZnO:Co layers obtained by pulsed laser  deposition method. Mater Sci-Pol, 36(3): 439-444.

Wared, S.H.H. and N.D. Radia (2021). Synthesis and  characterization of sodium alginate-g-polyacrylic acid  hydrogel and its application for crystal violet dye  adsorption. International Journal of Drug Delivery  Technology, 11(2): 556-565.

Zhang, M., Chang, L. and Y. Zhao (2019). Fabrication of  zinc oxide/polypyrrole nanocomposites for brilliant green  removal from aqueous phase. Arabian J. Sci. Eng., 44(1):  111-121.

Zhao, S., Zhan, Y., Wan, X., He, S., Yang, X., Hu, J. and  G. Zhang (2020). Selective and efficient adsorption of  anionic dyes by core/shell magnetic MWCNTs nanohybrid constructed through facial polydopamine tailored  graft polymerization: Insight of adsorption mechanism,  kinetic, isotherm and thermodynamic study. Journal of  Molecular Liquids, 319: 114289.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing