AccScience Publishing / AJWEP / Volume 19 / Issue 5 / DOI: 10.3233/AJW220065
RESEARCH ARTICLE

Bias-Corrected IDF Curves From Satellite-Based Rainfall for HoaBinh Province, Vietnam

Doan Thi Noi1 Nguyen Tien Thanh2*
Show Less
1 University of Transport and Communications, No.3 CauGiay Street, Lang Thuong Ward Dong Da District, Hanoi, Vietnam
2 Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Vietnam
AJWEP 2022, 19(5), 1–9; https://doi.org/10.3233/AJW220065
Submitted: 18 September 2021 | Revised: 7 December 2021 | Accepted: 7 December 2021 | Published: 16 September 2022
© 2022 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Satellite-based rainfall is extremely valuable data to quantify the probability of occurrence of rainfall  events but is still uncertain to a certain extent. Therefore, this study firstly evaluates the performance of the  satellite-based rainfall, PERSIANN-CCS, with rain gauge rainfall. The power transformation method is then  applied to correct the satellite-based rainfall. Importantly, the Intensity-Duration-Frequency (IDF) curves are then  constructed with the return periods of 5, 10, 25, 50, 100 and 200 years using the Gumbel probability distribution.  The results show an efficiency of power transformation on satellite-based rainfall for both rainfall amount and  events. It is especially noticed that it is well matched between bias-corrected satellite-based and rain gauge IDF  curves duration 12-, 24-, 48- and 72-hour as a particular. For the duration of less than 12-hour, satellite-based  IDF curves without bias correction significantly fit the rain-gauge IDF curves within the considered periods

Keywords
IDF
Gumbel distribution
PERSIANN-CCS
HoaBinh
Conflict of interest
The authors declare they have no competing interests.
References

Allgood, A.D. (2007). Post-processing improvements to an  ensemble forecast using an archive of past forecasts and  verifications. Master of Science Thesis Retrieved from http://purl.flvc.org/fsu/fd/FSU_migr_etd-0173

Beaufort, A., Gibier, F. and P. Palany (2018). Assessment  and correction of three satellite rainfall estimate products  for improving flood prevention in French Guiana.  International Journal of Remote Sensing, 40(1): 171-196.  doi:10.1080/01431161.2018.1511934

Bhatti, H.A., Rientjes, T., Haile, A.T., Habib, E. and W.  Verhoef (2016). Evaluation of bias correction method for  satellite-based rainfall data. Sensors, 16(6): 884. https:// doi.org/10.3390/s16060884

Brunetti, M.T., Melillo, M., Peruccacci, S., Ciabatta, L. and  L. Brocca (2018). How far are we from the use of satellite  rainfall products in landslide forecasting? Remote Sensing  of Environment, 210: 65-75. https://doi.org/10.1016/j. rse.2018.03.016

Butcher, J.B. and T. Zi (2019). Efficient method for updating  IDF curves to future climate projections. arXiv preprint  arXiv:1906.04802.

Ekwueme, B.N. and J.C. Agunwamba (2021). Trend analysis  and variability of air temperature and rainfall in regional  river basins. Civil Engineering Journal, 7(5): 816-826.

El Kasri, J., Lahmili, A., Soussi, H., Jaouda, I. and M.  Bentaher (2021). Trend analysis of meteorological  variables: Rainfall and temperature. Civil Engineering  Journal, 7(11): 1868-1879.

Ghanmi, H., Bargaoui, Z. and C. Mallet (2016). Estimation of  intensity-duration-frequency relationships according to the  property of scale invariance and regionalization analysis  in a Mediterranean coastal area. Journal of Hydrology,  541: 38-49.

Hong, Y., Gochis, D., Cheng, J.T., Hsu, K.L. and S.  Sorooshian (2007). Evaluation of PERSIANN-CCS  rainfall measurement using the NAME event rain gauge  network. Journal of Hydrometeorology, 8(3): 469-482.

Hong, Y., Hsu, K., Gao, X. and S. Sorooshian (2004).  Precipitation estimation from remotely sensed information  using an artificial neural network – Cloud classification  system. J. Appl. Meteorol., 43: 1834-1852.

Joyce, R.J., Janowiak, J.E., Arkin, P.A. and P. Xie (2004).  CMORPH: A method that produces global precipitation  estimates from passive microwave and infrared data at  high spatial and temporal resolution. J. Hydromet., 5: 487-503.

Kerich, E.C. (2020). Households drinking water sources and  treatment methods options in a regional irrigation scheme.  Journal of Human, Earth, and Future, 1(1): 10-19.

Kubota, T., Ushio, T., Shige, S., Kida, S., Kachi, M. and  K. Okamoto (2009). Verification of High-Resolution  Satellite-Based Rainfall Estimates around Japan Using  a Gauge-Calibrated Ground-Radar Dataset. J. Meteorol.  Soc. Jpn., 87: 203–222.

Kummerow, C., Simpson, J., Thiele, O., Barnes, W., Chang,  A.T.C., Stocker, E., Adler, R.F. et al. (2000). The status  of the Tropical Rainfall Measuring Mission (TRMM)  after two years in orbit. Journal of Applied Meteorology,39(12): 1965-1982. https://doi.org/10.1175/1520- 0450(2001)040<1965:TSOTTR>2.0.CO;2

Lai, C.G., Zhong, R.D., Wang, Z.L., Wu, X.Q., Chen, X.H.,  Wang, P. and Y.Q. Lian (2019). Monitoring hydrological  drought using long–term satellite–based precipitation data.  Sci. Total Environ., 649: 1198-1208.

Leander, R. and T.A. Buishand (2007). Resampling of regional  climate model output for the simulation of extreme river  flows. Journal of Hydrology, 332(3-4): 487-496.

Maggioni, V., Meyers, P.C. and M.D. Robinson (2016). A  review of merged high-resolution satellite precipitation  product accuracy during the tropical rainfall measuring  mission (TRMM) era. J. Hydrometeorol., 17: 1101-1117.

Marra, F., Armon, M., Borga, M. and E. Morin (2021).  Orographic effect on extreme precipitation statistics peaks  at hourly time scales. Geophysical Research Letters, 48(5):  e2020GL091498. https://doi.org/10.1029/2020GL091498

Miao, C., Ashouri, H., Hsu, K., Sorooshian, S. and Q.  Duan (2015). Evaluation of the PERSIANN-CDR daily  rainfall estimates in capturing the behavior of extreme  precipitation events over China. J. Hydrometeorol., 16: 1387-1396

MONRE (2016). National Resources and Environmental  Observation Network Planning for the period of 2016- 2025: A vision to 2030 (In Vietnamese). http://datafilesbk. chinhphu.vn/file-remote-v2/DownloadServlet?filePath=vb pq/2016/01/90.signed.pdf 

Nguyen, P., Ombadi, M., Sorooshian, S., Hsu, K.,  AghaKouchak, A., Braithwaite, D. and A.R. Thorstensen  (2018). The PERSIANN family of global satellite  precipitation data: A review and evaluation of products.Hydrology and Earth System Sciences, 22(11): 5801-5816.

Nguyen, P., Thorstensen, A., Sorooshian, S., Zhu, Q.,  Tran, H., Ashouri, H., Miao, C., Hsu, K. and X. Gao  (2017). Evaluation of CMIP5 model precipitation using  PERSIANN-CDR. J. Hydrometeorol., 18: 2313-2330.  https://doi.org/10.1175/JHM-D-16-0201.1, 2017

Okamoto, K., Shige, S., Kachi, M., Kubota, T. and T.  Ushio (2011). The global precipitation map produced by  spaceborn microwave radiometers and it’s applicationoverview of the GSMaP (Global Satellite Mapping of  Precipitation) project. IEEE, p. 4.

Tapiador, F.J., Kidd, C., Hsu, K.L. and F. Marzano  (2004). Neural networks in satellite rainfall estimation.  Meteorological Applications, 11(1): 83-91. https://doi. org/10.1017/S1350482704001173

Teutschbein, C. and J. Seibert (2012). Bias correction of  regional climate model simulations for hydrological  climate-change impact studies: Review and evaluation  of different methods. Journal of Hydrology, 456: 12-29.  https://doi.org/10.1016/j.jhydrol.2012.05.052

Wang, H. and B. Yong (2020). Quasi-global evaluation of  IMERG and GSMaP precipitation products over land using  gauge observations. Water, 12(1): 243.

Wilks, D.S. (1995). Statistical Methods in the Atmospheric  Sciences: An Introduction. Academic Press, 467pp.

Zhao, W., Kinouchi, T. and H.Q. Nguyen (2021). A framework  for projecting future intensity-duration-frequency (IDF)  curves based on CORDEX Southeast Asia multi-model  simulations: An application for two cities in Southern  Vietnam. Journal of Hydrology, 598: 126461. DOI:  10.1016/j.jhydrol.2021.12646

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing