AccScience Publishing / AJWEP / Volume 19 / Issue 1 / DOI: 10.3233/AJW220002
RESEARCH ARTICLE

Reverse Micellar Extraction of Copper Ions from  Wastewater: Modelling and Simulation

Tarun Kumar Chaturvedi1 Prabhat Pandit1 Sushant Upadhyaya1* Manish Vashishtha1
Show Less
1 Malaviya National Institute of Technology, Jaipur - 302017, India
AJWEP 2022, 19(1), 9–16; https://doi.org/10.3233/AJW220002
Submitted: 29 October 2021 | Revised: 20 November 2021 | Accepted: 20 November 2021 | Published: 19 January 2022
© 2022 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The waste streams from various agencies like textile, leather, electroplating, and process industries are  generating pollutants in the form of effluents or by products. These waste streams consist of various carcinogenic  pollutants such as dyes and heavy metals above the permissible limits. Numerous effluent treatment techniques  have been implemented for the removal of these pollutants before their discharge into the water body. In this work,  reverse micellar extraction was used for the removal of copper ions (heavy metal ions) from the waste stream.  Mathematical models namely, the ion exchange reaction model and electrostatic model were developed in order  to compare the experimental data with model predictions with regard to the effect of process parameters such as  initial metal ion concentration, sodium bis-2-ethyl hexyl sulphosuccinate (AOT) concentration, and organic to  aqueous phase volume ratio on final copper ion concentration in the aqueous phase. The ion exchange reaction  model was based on chemical and electrostatic interactions between heavy metal ions and the surfactant head  groups at the reverse micellar interface, whereas the electrostatic model was based on the adsorption of metal ions  on the reverse micellar interface due to electrostatic force of attraction with no chemical bonding. The developed  mathematical models were found in close agreement with the experimental data. Atomic absorption spectroscopy  (AAS) was used to measure the metal ion concentration in the aqueous phase.

Keywords
Reverse micelle
ion exchange reaction model
electrostatic model
AOT
AAS
Conflict of interest
The authors declare they have no competing interests.
References

Baghel, R., Kalla, S., Upadhyaya, S., Chaurasia, S.P. and  K. Singh (2020). CFD modeling of vacuum membrane  distillation for removal of Naphthol blue black dye from  aqueous solution using COMSOL multiphysics. Chemical  Engineering Research and Design, 158: 77-88.

Baghel, R., Upadhyaya, S., Singh, K., Chaurasia, S.P., Gupta,  A.B. and R.K. Dohare (2017). A review on membrane  applications and transport mechanisms in vacuum  membrane distillation. Reviews in Chemical Engineering,  34(1): 73-106. 

Bhatt, P., Vyas, R.K., Pandit, P. and M. Sharma (2013).  Adsorption of reactive blue and direct red dyes on  powdered activated carbon (PAC) - Equilibrium, kinetics  and thermodynamic studies. Nature Environment and  Pollution Technology, 12(3): 397-405.

 Gangadharappa, B.S., Dammalli, M., Rajashekarappa,  S., Pandurangappa, K.M.T. and G.B. Siddaiah. (2017).  Reverse micelles as a bioseparation tool for enzymes.  Journal of Proteins and Proteomics, 8: 105-120.

Bilal, M., Shah, J.A., Ashfaq, T., Gardazi, S.M.H., Tahir,  A.A., Pervez, A., Haroon, H. and Q. Mahmood (2013).  Waste biomass adsorbents for copper removal from  industrial wastewater-A review. Journal of Hazardous  Materials, 263: 322-333. 

Camarillo, R., Llanos, J., García-Fernández, L., Pérez,  Á. and P. Cañizares (2010). Treatment of copper (II)- loaded aqueous nitrate solutions by polymer enhanced  ultrafiltration and electrodeposition. Separation and  Purification Technology, 70(3): 320-328. 

Cui, K.L., Yuan, X.-Z., Zeng, G.-M., Liang, Y.-S., Han,  Z.-H., Zhang, S. and X. Peng (2011). Application of  biosurfactant on the construction of reversed micelle  and the optimization of its microenvironment. Zhongguo  Huanjing Kexue/China Environmental Science, 31(9): 1444-1450.

Egorova, K.S. and V.P. Ananikov (2017). Toxicity of metal  compounds: Knowledge and myths. Organometallics,  36(21): 4071-4090. 

Goswami, V., Upadhyaya, R. and S.K. Meher (2020).  Column study for adsorption of methylene blue dye using  Azadirachta indica adsorbent. Asian Journal of Water,  Environment and Pollution, 17(4): 47-52. 

Halim, S.F.A., Chang, S.H. and N. Morad (2020). Extraction  of Cu(II) ions from aqueous solutions by free fatty acidrich oils as green extractants. Journal of Water Process  Engineering, 33(September 2019): 100997. 

Hu, H., Li, X., Huang, P., Zhang, Q. and W. Yuan (2017).  Efficient removal of copper from wastewater by using  mechanically activated calcium carbonate. Journal of  Environmental Management, 203: 1-7. 

Jain, S., Vyas, R.K., Pandit, P. and A.K. Dalai (2014).  Adsorption of antiviral drug, acyclovir from aqueous  solution on powdered activated charcoal: Kinetics,  equilibrium, and thermodynamic studies. Desalination  and Water Treatment, 52(25-27): 4953-4968.

Kalla, S., Upadhyaya, S., Singh, K. and R. Baghel (2019).  Experimental and mathematical study of air gap membrane  distillation for aqueous HCl azeotropic separation. Journal  of Chemical Technology and Biotechnology, 94(1): 63-78. 

Quiroz, M.M., Maldonado, E.A.L., Terán, A.O., Guzman,  M.T.O., Luis, G.E.P. and J.Z. Ramírez (2017). Innovative  uses of carbamoyl benzoic acids in coagulationflocculation’s processes of wastewater. Chemical  Engineering Journal, 307: 981-988. 

Pandit, P. and S. Basu (2002). Removal of organic dyes from  water by liquid-liquid extraction using reverse micelles.  Journal of Colloid and Interface Science, 245(1): 208-214.  Pandit, P. and S. Basu (2004a). Dye and solvent recovery in  solvent extraction using reverse micelles for the removal  of ionic dyes. Industrial and Engineering Chemistry  Research, 43(24): 7861-7864. 

Pandit, P. and S. Basu (2004b). Removal of ionic dyes  from water by solvent extraction using reverse micelles.  Environmental Science and Technology, 38(8): 2435-2442.

Sankaran, R., Bong, J.H., Chow, Y.H., Wong, F.W.F., Ling,  T.C. and P.L. Show (2019). Reverse micellar system in  protein recovery - A review of the latest developments.  Current Protein & Peptide Science, 20(10): 1012-1026. 

Senske, M., Xu, Y., Bäumer, A., Schäfer, S., Wirtz, H.,  Savolainen, J., Weingärtner, H. and M. Havenith (2018).  Local chemistry of the surfactant’s head groups determines  protein stability in reverse micelles. Physical Chemistry  Chemical Physics, 20(13): 8515-8522. 

Siu, P., Koong, C.C., Saleem, L.F., Barford, J. and J.G.  McKay (2016). Equilibrium and kinetics of copper ions  removal from wastewater by ion exchange. Chinese  Journal of Chemical Engineering, 24(1): 94-100. 

Upadhyaya, S., Singh, K., Chaurasia, S.P., Baghel, R., Singh,  J.K. and R.K. Dohare (2018). Sensitivity analysis andTaguchi application in vacuum membrane distillation.  Membrane Water Treatment, 9(6): 435-445. 

Upadhyaya, S., Singh, K., Chaurasia, S.P., Dohare, R.K. and  M. Agarwal (2016a). Mathematical and CFD modeling  of vacuum membrane distillation for desalination.  Desalination and Water Treatment, 57(26): 11956-11971. 

Upadhyaya, S., Singh, K., Chaurasia, S.P., Dohare, R.K.  and M. Agarwal (2016b). Recovery and development  of correlations for heat and mass transfer in vacuum  membrane distillation for desalination. Desalination and  Water Treatment, 57(55): 26886-26898. 

Verma, S.P. and B. Sarkar (2017). Rhamnolipid based  micellar-enhanced ultrafiltration for simultaneous removal  of Cd(II) and phenolic compound from wastewater.  Chemical Engineering Journal, 319: 131-142.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing