AccScience Publishing / AJWEP / Volume 18 / Issue 3 / DOI: 10.3233/AJW210025
RESEARCH ARTICLE

Design of Collection System Parameters Using Known Reference Pipe Method (KRPM)

Imed Boukhari1 Lotfi Zeghadnia2* Fares Laouacheria1 Araibia Ahmed Salah1 Abdelkrim Guebail1 Jean Loup Robert3 Lakhdar Djemili1
Show Less
1 Laboratory of Soils and Hydraulic, Badji Mokhtar Annaba University, BP12, 23000 Annaba-Algeria
2 Laboratory of Modelling and Socio-economic Analysis in Water Science MASESE, Mohamed Cherif Messaadia University, 41000, Souk Ahras, Algeria
3 Department of Civil Engineering, Faculty of Science and Engineering, University of Laval Quebec, QC, Canada G1V 0A6
AJWEP 2021, 18(3), 31–30; https://doi.org/10.3233/AJW210025
Submitted: 31 March 2021 | Revised: 12 May 2021 | Accepted: 12 May 2021 | Published: 29 July 2021
© 2021 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The storm water drainage network is generally calculated based on the Manning equation, where the slope, roughness of the pipe wall, and flow are known, while conversely the velocity, diameter, and hydraulic radius are unknown characteristics, although they are very important for the work done by a hydraulic engineer who needs these parameters to find their values, including the students taking coursework relating to waste-water engineering. The computation of these parameters in partially full pipes and based on the Manning equation is implicit and needs to be computed using iterative and laborious methods. In this paper, a new, simple and easy method is presented based on a reference pipe with known characteristics (Known Reference Pipe Method: KRPM), as well as the effect of the up-pipe parameters on the down-pipes according to each case that is possible through the watershed drainage system arrangement, for both full and partially filled circular pipes.

Keywords
Storm water drainage network
Manning equation
uniform and steady flow
watersheds arrangement
KRPM
Conflict of interest
The authors declare they have no competing interests.
References

Achour, B. and A. Bedjaoui (2006). Discussion of explicit  solutions for normal depth problem by Prabhata K.  Swamee, Pushpa N. Rathie. Journal of Hydraulic  Research, 44: 715-717.

Akgiray, Ö. (2005). Explicit solutions of the Manning  equation in partially filled circular pipes. Environmental  Engineering Science, 32: 490-499.

Ashok, K.S. and P.K. Swamee (2008). Design method for  circular and non-circular sewer sections. Journal of  Hydraulic Research, 46: 133-141.

Barr, D.I.H. and M.M. Das (1986). Direct solution for normal  depth using the manning equation. Proceedings of the  Institution of Civil Engineers, Part 2, 81: 315-333.

Boukhari, I., Zeghadnia, L., Djemili, L. and J.L. Robert  (2020). Closure to “new approach for the computation  of the water surface angle in partially filled pipes: Pipes  arranged in parallel” by Lotfi Zeghadnia, Jean loup Robert.  Journal of Pipeline Systems - Engineering and Practice,  11: 1-2.

Bourrier, R. (1997). Les réseaux d’assainissement:  Calculs, Applications, Perspectives. Tec & Doc, 4éme  édition. France, p.313. (Sewer network: Computations,  Applications, Prospects: Tec & Doc, 4th edition, France,  p.313.)

Carlier, M. (1980). Hydraulique Générale, Eyrolles, France, p.  123. (Fundamentals of Hydraulic Eyrolles, France, p. 123.)

Christo, B. and T. George (2013). Accurate explicit equations  for the determination of pipe diameters. International  Journal of Hydraulic Engineering, 2: 115-120.

Chow, V.T. (1959). Open channel hydraulics. McGraw-Hill,  New York, p.68.

Cléber, H.A.G., Vladimir, C.B.S. and H.C. Nélia (2019).  Analysis of methodologies for determination of the  economic pipe diameter. Brazilian Journal of Water  Resources, 24: 1-8.

Donkin, T. (1937). The effect of the form of cross-section on  the capacity and cost of trunk sewers. Journal Institution  of Civil Engineers, 7: 261-279.

Elhakeem, M. and A. Sattar (2017). Explicit solution for the  specific flow depths in partially filled pipes. Journal of  Pipeline Systems Engineering and Practice, ASCE, 8: 1-6.

French, R.L. (1915). Circular sewers versus egg-shaped,  catenary and horseshoe cross-sections. Engineering  Record, 72: 222-223.

Fukuchi, T. (2006). Hydraulic element chart for pipe flow  using new definition of hydraulic radius. Journal of  Hydraulic Engineering, 132: 990-994.

Giroud, J.P., Palmer, B. and J.E. Dove (2000). Calculation  of flow velocity in pipes as function of flow rate. Journal  of Geosynthétics International, 7: 583-600.

Kuhn, W. (1976). Der manipulierte Kreis – Gedanken zur  Profilform bei Abwasserkanälen (The manipulated circle  – Thoughts on the sewer profile shape). Korrespondenz  Abwasser, 23: 30-37 (in German).

Manning, R. (1891). On the flow of water in open channels  and pipes. Transactions, Institution of Civil Engineers of  Ireland, 20: 161-207.

Marc, S. and S. Bechir (2006). Guide technique de  l’assainissement.3eme édition, le Montier, Paris, p.251.  (Guide for sewerage. 3rd edition, le Montier, Paris, p.251.)

Rajaratnam, N. (1960). Direct solution for diameter of pipe  for rough turbulent flow. La houille Blanche, 6: 714-719.

Saatçi, A. (1990). Velocity and depth of flow calculations  in partially pipes. Journal of Environment Engineering,  ASCE, 116: 1202-1208.

Schmidt, H. (1976). Die Verwendung von Eiprofilen aus  hydraulischer Sicht (The use of eggshaped sewers based  on hydraulic considerations). Korrespondenz Abwasser,  23: 209-212 (in German).

Swamee, P.K (2001). Design of sewer line. Journal of  Environment Engineering, ASCE, 127: 776-781. Swamee, P.K. and P.N. Rathie (2007). Exact equations for  pipe-flow problems. Journal of Hydraulic Research, 45:  519-528.

Swarna, V. and P. Modak (1990). Graphs for hydraulic design  of sanitary sewers. Journal of Environment Engineering, 10.1061/(ASCE)0733-9372., 116: 561-574.

Thormann, E. (1941). Einheitliche Leitungsquerschnitte für  Entwässerungsleitungen (Filling curves of drainage pipes).  Gesundheits-Ingenieur, 64: 103-110 (in German).

T h o r m a n n , E . ( 1 9 4 4 ) . F ü l l h ö h e n k u r v e n v o n  Entwässerungsleitungen (Filling curves for drainage  pipes). Gesundheits-Ingenieur, 67: 35-47 (in German).

Tommy, S.W.W. (2007). Exact solutions for normal depth  problem. Journal of Hydraulic Research, 45: 567-571.

Wang, M., Weimin, D. and Y. Wang (2012). Determination  optimum pipe diameter method of tree path heating pie  network. Applied Mechanics and Materials, 238: 385-389.

Wiggert, D.C. (1972). Transient flow in free-surface,  pressurized systems. Journal of Hydraulic Division, ASCE,  98: 11-27.

Willi, H.H. (2010). Wastewater hydraulics theory and  practice, 2nd edition, Springer, London, p. 55.

Zeghadnia, L. (2007). Computation of the pressurized  turbulent flow in circular pipe. Magister Thesis Badji  Mokhtar University, Algeria, pp.51-89.

Zeghadnia, L., Djemili, L., Houichi, L. and N. Rezgui (2009).  Détermination de la vitesse et la hauteur normale dans  une conduite Partiellement remplie (Estimation of the  flow velocity and Normal depth in partially filled pipe).  European Journal for Scientific Research, 37: 561-566.

Zeghadnia, L., Djemili, L. and L. Houichi (2014b). Analytic  solution for the computation of flow velocity and water  surface angle for drainage and sewer networks: Case  of pipes arranged in series.”International Journal of  Hydrology Science and Technology, Inderscience, 4: 58-67.

Zeghadnia, L., Djemili, L., Rezgui, N. and L. Houichi (2014c).  New equation for the computation of flow velocity in  partially filled pipes arranged in parallel. Journal of Water  Science and Technology, IWA, 70: 160-166. .

Zeghadnia, L., Djemili, L., Houichi, L. and N. Rezgui (2015).  Efficiency of the flow in the circular pipe. Journal of  Environmental Science and Technology, 8: 42-58. 

Zeghadnia, L. and J.L. Robert (2017). New approach for the  computation of the water surface angle in partially filled  pipes: Pipes arranged in parallel. Journal of Pipeline  Systems Engineering and Practice, ASCE, 8: 1-4.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing