Design of Collection System Parameters Using Known Reference Pipe Method (KRPM)
The storm water drainage network is generally calculated based on the Manning equation, where the slope, roughness of the pipe wall, and flow are known, while conversely the velocity, diameter, and hydraulic radius are unknown characteristics, although they are very important for the work done by a hydraulic engineer who needs these parameters to find their values, including the students taking coursework relating to waste-water engineering. The computation of these parameters in partially full pipes and based on the Manning equation is implicit and needs to be computed using iterative and laborious methods. In this paper, a new, simple and easy method is presented based on a reference pipe with known characteristics (Known Reference Pipe Method: KRPM), as well as the effect of the up-pipe parameters on the down-pipes according to each case that is possible through the watershed drainage system arrangement, for both full and partially filled circular pipes.
Achour, B. and A. Bedjaoui (2006). Discussion of explicit solutions for normal depth problem by Prabhata K. Swamee, Pushpa N. Rathie. Journal of Hydraulic Research, 44: 715-717.
Akgiray, Ö. (2005). Explicit solutions of the Manning equation in partially filled circular pipes. Environmental Engineering Science, 32: 490-499.
Ashok, K.S. and P.K. Swamee (2008). Design method for circular and non-circular sewer sections. Journal of Hydraulic Research, 46: 133-141.
Barr, D.I.H. and M.M. Das (1986). Direct solution for normal depth using the manning equation. Proceedings of the Institution of Civil Engineers, Part 2, 81: 315-333.
Boukhari, I., Zeghadnia, L., Djemili, L. and J.L. Robert (2020). Closure to “new approach for the computation of the water surface angle in partially filled pipes: Pipes arranged in parallel” by Lotfi Zeghadnia, Jean loup Robert. Journal of Pipeline Systems - Engineering and Practice, 11: 1-2.
Bourrier, R. (1997). Les réseaux d’assainissement: Calculs, Applications, Perspectives. Tec & Doc, 4éme édition. France, p.313. (Sewer network: Computations, Applications, Prospects: Tec & Doc, 4th edition, France, p.313.)
Carlier, M. (1980). Hydraulique Générale, Eyrolles, France, p. 123. (Fundamentals of Hydraulic Eyrolles, France, p. 123.)
Christo, B. and T. George (2013). Accurate explicit equations for the determination of pipe diameters. International Journal of Hydraulic Engineering, 2: 115-120.
Chow, V.T. (1959). Open channel hydraulics. McGraw-Hill, New York, p.68.
Cléber, H.A.G., Vladimir, C.B.S. and H.C. Nélia (2019). Analysis of methodologies for determination of the economic pipe diameter. Brazilian Journal of Water Resources, 24: 1-8.
Donkin, T. (1937). The effect of the form of cross-section on the capacity and cost of trunk sewers. Journal Institution of Civil Engineers, 7: 261-279.
Elhakeem, M. and A. Sattar (2017). Explicit solution for the specific flow depths in partially filled pipes. Journal of Pipeline Systems Engineering and Practice, ASCE, 8: 1-6.
French, R.L. (1915). Circular sewers versus egg-shaped, catenary and horseshoe cross-sections. Engineering Record, 72: 222-223.
Fukuchi, T. (2006). Hydraulic element chart for pipe flow using new definition of hydraulic radius. Journal of Hydraulic Engineering, 132: 990-994.
Giroud, J.P., Palmer, B. and J.E. Dove (2000). Calculation of flow velocity in pipes as function of flow rate. Journal of Geosynthétics International, 7: 583-600.
Kuhn, W. (1976). Der manipulierte Kreis – Gedanken zur Profilform bei Abwasserkanälen (The manipulated circle – Thoughts on the sewer profile shape). Korrespondenz Abwasser, 23: 30-37 (in German).
Manning, R. (1891). On the flow of water in open channels and pipes. Transactions, Institution of Civil Engineers of Ireland, 20: 161-207.
Marc, S. and S. Bechir (2006). Guide technique de l’assainissement.3eme édition, le Montier, Paris, p.251. (Guide for sewerage. 3rd edition, le Montier, Paris, p.251.)
Rajaratnam, N. (1960). Direct solution for diameter of pipe for rough turbulent flow. La houille Blanche, 6: 714-719.
Saatçi, A. (1990). Velocity and depth of flow calculations in partially pipes. Journal of Environment Engineering, ASCE, 116: 1202-1208.
Schmidt, H. (1976). Die Verwendung von Eiprofilen aus hydraulischer Sicht (The use of eggshaped sewers based on hydraulic considerations). Korrespondenz Abwasser, 23: 209-212 (in German).
Swamee, P.K (2001). Design of sewer line. Journal of Environment Engineering, ASCE, 127: 776-781. Swamee, P.K. and P.N. Rathie (2007). Exact equations for pipe-flow problems. Journal of Hydraulic Research, 45: 519-528.
Swarna, V. and P. Modak (1990). Graphs for hydraulic design of sanitary sewers. Journal of Environment Engineering, 10.1061/(ASCE)0733-9372., 116: 561-574.
Thormann, E. (1941). Einheitliche Leitungsquerschnitte für Entwässerungsleitungen (Filling curves of drainage pipes). Gesundheits-Ingenieur, 64: 103-110 (in German).
T h o r m a n n , E . ( 1 9 4 4 ) . F ü l l h ö h e n k u r v e n v o n Entwässerungsleitungen (Filling curves for drainage pipes). Gesundheits-Ingenieur, 67: 35-47 (in German).
Tommy, S.W.W. (2007). Exact solutions for normal depth problem. Journal of Hydraulic Research, 45: 567-571.
Wang, M., Weimin, D. and Y. Wang (2012). Determination optimum pipe diameter method of tree path heating pie network. Applied Mechanics and Materials, 238: 385-389.
Wiggert, D.C. (1972). Transient flow in free-surface, pressurized systems. Journal of Hydraulic Division, ASCE, 98: 11-27.
Willi, H.H. (2010). Wastewater hydraulics theory and practice, 2nd edition, Springer, London, p. 55.
Zeghadnia, L. (2007). Computation of the pressurized turbulent flow in circular pipe. Magister Thesis Badji Mokhtar University, Algeria, pp.51-89.
Zeghadnia, L., Djemili, L., Houichi, L. and N. Rezgui (2009). Détermination de la vitesse et la hauteur normale dans une conduite Partiellement remplie (Estimation of the flow velocity and Normal depth in partially filled pipe). European Journal for Scientific Research, 37: 561-566.
Zeghadnia, L., Djemili, L. and L. Houichi (2014b). Analytic solution for the computation of flow velocity and water surface angle for drainage and sewer networks: Case of pipes arranged in series.”International Journal of Hydrology Science and Technology, Inderscience, 4: 58-67.
Zeghadnia, L., Djemili, L., Rezgui, N. and L. Houichi (2014c). New equation for the computation of flow velocity in partially filled pipes arranged in parallel. Journal of Water Science and Technology, IWA, 70: 160-166. .
Zeghadnia, L., Djemili, L., Houichi, L. and N. Rezgui (2015). Efficiency of the flow in the circular pipe. Journal of Environmental Science and Technology, 8: 42-58.
Zeghadnia, L. and J.L. Robert (2017). New approach for the computation of the water surface angle in partially filled pipes: Pipes arranged in parallel. Journal of Pipeline Systems Engineering and Practice, ASCE, 8: 1-4.