AccScience Publishing / AJWEP / Volume 18 / Issue 1 / DOI: 10.3233/AJW210003
RESEARCH ARTICLE

Identifying Potential Erosion-Prone Areas in the Indian  Himalayan Region Using the Revised Universal Soil Loss  Equation (RUSLE)

Dorje Dawa1 Vairaj Arjune1*
Show Less
1 Centre for Interdisciplinary Studies of Mountain and Hill Environment, University of Delhi, New Delhi – 110007, India
2 Department of Environmental Studies, University of Delhi, New Delhi – 110007, India
AJWEP 2021, 18(1), 15–23; https://doi.org/10.3233/AJW210003
Submitted: 13 September 2019 | Revised: 19 November 2020 | Accepted: 19 November 2020 | Published: 25 January 2021
© 2021 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Soil erosion is one of the most critical environmental issues with severe consequences. Hence, it  continues to be a significant limitation in the progress of many developing countries. Prediction and assessment  of soil loss are, therefore, of utmost importance for soil fertility conservation, land and water management. Recent  technological advances have provided useful models through which remotely-sensed data for a large scale area can  be analysed and interpreted. The present study adopts a physiographically, biologically and climatically unique  model for the assessment of soil erosion in the Indian Himalayan Region. The Revised Universal Soil Loss Equation  model was applied in conjunction with Geographic Information System to estimate the average annual rate of  soil erosion at both state and district levels in India. The model was deployed using coarse resolution datasets  to identify specific areas vulnerable to soil erosion. In determining the spatial distribution of average annual soil  erosion within the study region, all cell-based parameters of the model were multiplied in the specified 500 m  × 500 m spatial resolution. The spatial pattern of annual soil erosion indicates that maximum soil loss occurs in  northern and eastern states whereas low rates of erosion is observed in the eastern-most part of the study area.

Keywords
Erosion
geographic information system
land cover
remote sensing
soil loss.
Conflict of interest
The authors declare they have no competing interests.
References

Ananda, J. and G. Herath (2003). Soil erosion in developing  countries: A socio-economic appraisal. Journal of  Environmental Management, 68(4): 343-353. doi:10.1016/ s0301-4797(03)00082-3

Angima, S.D., Stott, D.E., O’Neill, M.K., Ong, C.K.  and G.A. Weesies (2003). Soil erosion prediction  using RUSLE for central Kenyan highland conditions.  Agriculture, Ecosystems & Environment, 97(1-3): 295-308.  doi:10.1016/s0167-8809(03)00011-2

Ashiagbor, G., Forkuo, E.K., Laari, P. and R. Aabeyir (2013).  Modeling soil erosion using RUSLE and GIS tools.  International Journal of Remote Sensing & Geoscience,  2(4): 7-17. 

Boardman, J. (2006). Soil erosion science: Reflections on the  limitations of current approaches. Catena, 68(2-3): 73-86.  doi:10.1016/j.catena.2006.03.007

Cooper, K. (2011). Evaluation of the Relationship between the  RUSLE R-Factor and Mean Annual Precipitation. USA:  Colorado State University.

Dabral, P.P., Baithuri, N. and A. Pandey (2008). Soil erosion  assessment in a hilly catchment of North Eastern india  using USLE, GIS and remote sensing. Water Resources  Management, 22(12): 1783-1798. doi:10.1007/s11269- 008-9253-9

Fistikoglu, O. and N.B. Harmancioglu (2002). Integration  of GIS with USLE in Assessment of Soil Erosion. Water  Resources Management, 16(6): 447-467. 

Geneletti, D. and D. Dawa (2009). Environmental impact  assessment of mountain tourism in developing regions:  A study in Ladakh, Indian Himalaya. Environmental  Impact Assessment Review, 29(4): 229-242. doi:10.1016/j. eiar.2009.01.003

Jain, S.K., Kumar, S. and J. Varghese (2001). Estimation  of soil erosion for a Himalayan watershed using GIS  technique. Water Resources Management, 15(1): 41-54.  doi:https://doi.org/10.1023/A:1012246029263

Jasrotia, A.S. and R. Singh (2006). Modeling runoff and  soil erosion in a catchment area, using the GIS, in the  Himalayan region, India. Environmental Geology, 51(1): 29-37. doi:10.1007/s00254-006-0301-6

Jung, K.H., Kim, W.T., Hur, S.O., Ha, S.K., Jung, P.K. and  Y.S. Jung (2004). USLE/RUSLE factors for national  scale soil loss estimation based on the digital detailed  soil map. Korean Journal of Soil Science and Fertilizer, 37(4): 199-206. 

Kouli, M., Soupios, P. and F. Vallianatos (2008). Soil erosion  prediction using the Revised Universal Soil Loss Equation  (RUSLE) in a GIS framework, Chania, Northwestern  Crete, Greece. Environmental Geology, 57(3): 483-497.  doi:10.1007/s00254-008-1318-9

Millward, A.A. and J.E. Mersey (1999). Adapting the RUSLE  to model soil erosion potential in a mountainous tropical  watershed. Catena, 38(2): 109-129

Mitasova, H., Hofierka, J., Zlocha, M. and I.R. Iverson  (1996). Modelling topographic potential for erosion  and deposition using GIS. International Journal of  Geographical Information Systems, 10(5): 629-641.  doi:10.1080/02693799608902101

Morgan, R.P.C. (2005). Soil Erosion and Conservation (Third  Edition ed.). United Kingdom: Blackwell Publishing.

Narayana, D.V. and R. Babu (1983). Estimation of soil  erosion in India. Journal of Irrigation and Drainage  Engineering, 109(4): 419-434.

Phillips, J.D. (1989). Predicting minimum achievable soil  loss in developing countries. Applied Geography, 9(4): 219-236. 

Pimentel, D. (1993). World Soil Erosion and Conservation (D.  Pimentel ed.). U.S.A, New York: Cambridge University  Press.

Pimentel, D. (2006). Soil Erosion: A food and environmental  threat. Environment, Development and Sustainability, 8(1): 119-137. doi:10.1007/s10668-005-1262-8

Pimentel, D., Berger, B., Filiberto, D., Newton, M., Wolfe,  B., Karabinakis, E. . . . and S. Nandagopal (2004).  Water resources: Agricultural and environmental issues.  BioScience, 54(10): 909-918. 

Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz,  D., McNair, M. . . . and R. Blair (1995). Environmental  and economic costs of soil erosion and conservation  benefits. Science, 267(5201): 1117-1123. 

Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K.  and D.C. Yoder (1997). Predicting soil erosion by water:  A guide to conservation planning with the revised  universal soil loss equation (RUSLE). USA: United States  Department of Agriculture.

Renard, K.G. and J.R. Freimund (1994). Using monthly  precipitation data to estimate the R-factor in the revised  USLE. Journal of Hydrology, 157: 287-306. 

Sharma, A. (2010). Integrating terrain and vegetation indices  for identifying potential soil erosion risk area. Geo-spatial  Information Science, 13(3): 201-209. doi:10.1007/s11806- 010-0342-6

Shekinah, D.E. and R. Saraswathy (2005). Impacts of soil  erosion by water – A review. Agricultural Reviews, 26(3): 195-202. 

Terranova, O., Antronico, L., Coscarelli, R. and P. Iaquinta  (2009). Soil erosion risk scenarios in the Mediterranean  environment using RUSLE and GIS: An application model  for Calabria (southern Italy). Geomorphology, 112(3-4): 228-245. doi:10.1016/j.geomorph.2009.06.009

Wischmeier, W.H. and D.D. Smith (1978). Predicting rainfall  erosion losses – A guide to conservation planning. USA:  United States Department of Agriculture.

Zhang, W. and D.R. Montgomery (1994). Digital elevation  model grid size, landscape representation, and hydrologic  simulations. Water Resources Research, 30(4): 1019-1028.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing