AccScience Publishing / AJWEP / Volume 18 / Issue 1 / DOI: 10.3233/AJW210002
RESEARCH ARTICLE

Development of Forest Shelterbelts Considering Statistical  Forecasts Modelling of Local Weather

Irina Volkova1* Kseniia Pitulko2 Anzhelika Sergeeva2 Saida Pshidatok3
Show Less
1 Institute of Geography RAS, Moscow, Russian Federation
2 Saint Petersburg’ Institute of the All-Russian State University of Justice (Russian Law Academy of the Ministry of Justice of Russian Federation), Saint Petersburg, Russian Federation
3 Kuban State Agrarian University, Krasnodar, Russian Federation
AJWEP 2021, 18(1), 7–14; https://doi.org/10.3233/AJW210002
Submitted: 20 October 2020 | Revised: 16 November 2020 | Accepted: 16 November 2020 | Published: 25 January 2021
© 2021 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

This work aims to study the effect of high temperatures and phytopathogenic bacteria on different  types of trees in the forest shelterbelts. Therefore, in 2018, 17 tree species were studied from 50 sample sites in  the Moscow oblast (Russia). Leaf scorching, diseases caused by phytopathogenic bacteria, and heat damage to  the crowns were examined in 5224 tree species. Based on the degree of crown damage, the studied tree species  were divided into four classes. It was found that the heat damage to tree crowns was identical between the  three sampling aspects (correlation coefficient 0.99). The plant species composition must be considered when  developing forest shelterbelts. A long-term forecast on structural changes of planted areas is possible, considering  the species composition and climatic characteristics of the region. Class 5 includes only chestnut; class 4 includes  three species; class 3 is represented by seven species. Class 2, includes six species, and is the most suitable in  developing forest plantations. No tree species in class 1 were found (trees with no damage). There is a connection  between pathologies and heat injuries in trees from classes 4 to 5 (correlation 0.89)

Keywords
Forest shelterbelts
phytopathogenic bacteria
heat injuries
chlorosis
necrosis.
Conflict of interest
The authors declare they have no competing interests.
References

Aidosov, A., Aidosov, G., Zaurbekov, N., Zaurbekova, N.,  Zaurbekova, G. and I. Zaurbekov (2019). Mathematicalmodelling of atmospheric pollution in an industrial region  with a view to design an information system software for  ecological situation. Ekoloji, 28(107): 349-358.

Akatov, P.V. (2016). Global warming and its regional  consequences for the European part of Russia. Living and  Bioinert System, 15: 14-22. 

Bennett, J.M., Calosi, P., Clusella-Trullas, S., Martínez,  B., Sunday, J., Algar, A.C. ... and C. Rahbek (2018).  GlobTherm, a global database on thermal tolerances  for aquatic and terrestrial organisms. Scientific Data, 5: 180022.

Bita, C. and T. Gerats (2013). Plant tolerance to high  temperature in a changing environment: Scientific  fundamentals and production of heat stress-tolerant  crops. Frontiers in Plant Science, 4: 273.

Bjorkman, A.D., Myers-Smith, I.H., Elmendorf, S.C.,  Normand, S., Rüger, N., Beck, P.S. ... and D. Georges  (2018). Plant functional trait change across a warming  tundra biome. Nature, 562(7725): 57-62.

Dukes, J.S., Pontius, J., Orwig, D., Garnas, J.R., Rodgers,  V.L., Brazee, N. ... and J. Ehrenfeld (2009). Responses  of insect pests, pathogens, and invasive plant species  to climate change in the forests of northeastern North  America: What can we predict? Canadian Journal of  Forest Research, 39(2): 231-248.

Garrett, K.A., Forbes, G.A., Savary, S., Skelsey, P., Sparks,  A.H., Valdivia, C. ... and H. Eckersten (2011). Complexity  in climate-change impacts: An analytical framework for  effects mediated by plant disease. Plant Pathology, 60(1): 15-30.

Grigorieva, S.O., Konstantinov, A.V. and I.M. Shkolnik  (2016). Influence of climate changes on the composition  of forest stands, their stability and areas of the main forestforming species. In: Proceedings of the St. Petersburg  Scientific Research Institute of Forestry, 3: 21. 

Jespersen, D. (2020). Heat shock induced stress tolerance  in plants: Physiological, biochemical, and molecular  mechanisms of acquired tolerance. In: Priming-Mediated  Stress and Cross-Stress Tolerance in Crop Plants (pp. 161- 174). Academic Press.

Körner, C. (2012). Treelines will be understood once  the functional difference between a tree and a shrub  is. Ambio, 41(3): 197-206.

Körner, C. (2016). Plant adaptation to cold climates. F1000  Research, 5.

Kravets, M.V., Bartenev, I.I., Gavrin, D.S. and S.P. Borzenkov  (2016). Global warming and peculiarities of climate  change in the Central Black Earth region. Actual problems  of modern agricultural sciences, 3: 18-20. 

Llorens, E., González-Hernández, A.I., Scalschi, L.,  Fernández-Crespo, E., Camañes, G., Vicedo, B. and P.  García-Agustín (2020). Priming mediated stress and crossstress tolerance in plants: Concepts and opportunities.  In: Priming-Mediated Stress and Cross-Stress Tolerance  in Crop Plants, pp. 1-20. Academic Press.

Meteonovosti.ru (2020). Retrieved from http://www.hmn.ru/ index.php?index=16&value=27612

Michaletz, S.T., Weiser, M.D., McDowell, N.G., Zhou, J.,  Kaspari, M., Helliker, B.R. and B.J. Enquist (2016).  The energetic and carbon economic origins of leaf  thermoregulation. Nature Plants, 2(9): 16129. Michaletz, S.T., Weiser, M.D., Zhou, J., Kaspari, M., Helliker,  B.R. and B.J. Enquist (2015). Plant thermoregulation:  energetics, trait–environment interactions, and carbon  economics. Trends in Ecology & Evolution, 30(12): 714- 724.

Moles, A.T., Perkins, S.E., Laffan, S.W., Flores-Moreno,  H., Awasthy, M., Tindall, M.L. ... and M. Anand (2014).  Which is a better predictor of plant traits: Temperature  or precipitation? Journal of Vegetation Science, 25(5): 1167-1180.

Moscow map (2020). Districts of the Moscow regionю  Retrieved from http://moskva-map.ru/mo-rajony.htm

Nievola, C.C., Carvalho, C.P., Carvalho, V. and E. Rodrigues  (2017). Rapid responses of plants to temperature  changes. Temperature, 4(4): 371-405.

Olson, M.E., Soriano, D., Rosell, J.A., Anfodillo, T.,  Donoghue, M.J., Edwards, E.J. ... and A. Echeverría  (2018). Plant height and hydraulic vulnerability to  drought and cold. Proceedings of the National Academy  of Sciences, 115(29): 7551-7556.

O’sullivan, O.S., Heskel, M.A., Reich, P.B., Tjoelker, M.G.,  Weerasinghe, L.K., Penillard, A. ... and N.H. Bahar (2017).  Thermal limits of leaf metabolism across biomes. Global  Change Biology, 23(1): 209-223.

O’sullivan, O.S., Weerasinghe, K.L.K., Evans, J.R., Egerton,  J.J., Tjoelker, M.G. and O.K. Atkin (2013). High-resolution  temperature responses of leaf respiration in snow gum(Eucalyptus pauciflora) reveal high-temperature limits to  respiratory function. Plant, Cell & Environment, 36(7): 1268-1284.

Parvathi, M.S., Dhanyalakshmi, K.H. and N.K. Nataraja  (2020). Molecular mechanisms associated with drought  and heat tolerance in plants and options for crop  improvement for combined stress tolerance. In: Agronomic  Crops, pp. 481-502. Springer, Singapore.

Safonov, V. (2020). Assessment of heavy metals in milk  produced by Black-and-White Holstein cows from  Moscow. Current Research in Nutrition and Food Science  Journal, 8(2): 410-415.

Timoshin, A.V., Sevbitov, A.V., Drobot, G.V., Yumashev,  A.V. and M.D. Timoshina (2018). Use of bioresorbable  plates on the basis of collagen and digestase for  treatment of diseases of oral mucosa (review of clinical  cases). International Journal of Green Pharmacy, 12(S1): 290-296.

Vitasse, Y., Lenz, A. and C. Körner (2014). The interaction  between freezing tolerance and phenology in temperate  deciduous trees. Frontiers in Plant Science, 5: 541.

Volodchenkova, L.А. (2010). Crisis ecological situations  in the evolution of forest biocenosis [Crisis Ecological  Situations in Forest Biocenosis Evolution]. In: III AllRussian Scientific-Practical Conference “Biological  Systems: Stability, Principles and Mechanisms of  Functioning”, pp. 137-139. Nizhniy Tagil: NTGSPA.

Wright, I.J., Dong, N., Maire, V., Prentice, I.C., Westoby, M.,  Díaz, S. ... and M.R. Leishman (2017). Global climatic  drivers of leaf size. Science, 357(6354): 917-921.

Zolotukhin, A.I. (2015). Adaptation of woody plants after  heat stress. Bulletin of the Saratov University. New series.  Chemistry series. Biology. Ecology, 1(1): 93-98.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing