AccScience Publishing / AJWEP / Volume 16 / Issue 1 / DOI: 10.3233/AJW190004
RESEARCH ARTICLE

Satellite Image-based Land Use/Land Cover Dynamics and Forest Cover Change Analysis (1996-2016) in Odisha, India

Amarjeet Kaur1 Swagata Ghosh1* Sanjay Keshari Das2
Show Less
1 University School of Environment Management, Guru Gobind Singh Indraprastha University Sector-16c, Dwarka, New Delhi – 110075, India
2 Amity Institute of Geoinformatics and Remote Sensing (AIGIRS), Amity University Sector 125, Noida – 201313, U.P., India
AJWEP 2019, 16(1), 25–39; https://doi.org/10.3233/AJW190004
Submitted: 6 June 2018 | Revised: 13 November 2018 | Accepted: 13 November 2018 | Published: 10 January 2019
© 2019 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Land use/land cover change dealing with the alteration of the land surface and its biotic cover is an  important aspect of human-induced global environmental change. The purpose of this study is to monitor long-term  changes in LU/LC in Odisha with special emphasis to the forest cover change. LU/LC maps prepared through  visual interpretation, indicated a decreasing pattern in percentage forest cover area (40.0%-1996, 39.0%-2006,  37.7%-2016). Conversely, significant increase in built-up area (0.3% in 1996, 0.5% in 2006 and 0.6% in 2016)  have been observed. Forest cover maps derived through NDVI thresholding revealed a fluctuating trend of change  in dense forest (23%-1996, 24%-2006 and 21%-2016) and increasing trend of moderate vegetation (32%-1996,  34%-2006 and 36%-2016). Vegetation cover change detection through post-classification comparison between  NDVI classified images exhibited that 11,543 km2  and 2662 km2  under dense forest cover area had been converted  to moderate and sparse vegetation cover in 2006 from 1996. Likewise, 10,635 km2  and 2744 km2  of dense forest  cover area had been converted to moderate vegetation and sparse vegetation cover respectively from 2006 to  2016. Rapid urbanization in Bhubaneshwar and Cuttack was one of the reasons for the change in surrounding  land covers and eco-sensitive areas. On the other hand, 10,857 km2  and 1960 km2  area which was under moderate  and sparse vegetation cover respectively in 1996 had been converted to dense vegetation cover in 2006. Similarly,  conversion (12,738 km2 area of moderate and 4401 km2  area sparse vegetation cover into dense vegetation) took  place from 2006 to 2016. On a positive note, it can be remarked that implementation of plantations, afforestation  programmes were found to be useful in saving the forest in Odisha.

Keywords
Land use/land cover
forest cover
normalized difference vegetation index
remote sensing
Odisha.
Conflict of interest
The authors declare they have no competing interests.
References

Bindra, P.S. (2017). The Vanishing: India’s Wildlife Crisis.  Haryana: Penguin Random House India.

Champion, H.G. and S.K. Seth (1968). Revised Survey of  Forest Types of India. New Delhi. Govt. of India.

Chander, G., Markham, B.L. and D.L. Helder (2009).  Summary of current radiometric calibration coefficients  for Landsat MSS, TM, ETM+, and EO-1 ALI sensors.  Remote Sensing of Environment, 113: 893-903.

Chavez, P.S. Jr. (1988). An improved dark-object subtraction  technique for atmospheric scattering correction of  multispectral data. Remote Sensing of Environment, 24: 459-479.

Chavez, P.S. Jr. (1996). Image-based atmospheric  corrections—Revisited and Improved. Photogrammetric  Engineering and Remote Sensing, 62(9): 1025-1036.

Department of Water Resources, Odisha. Activities Report  (2015-16). Retrieved from http://www.dowrorissa.gov.in/ Activities/Activities Report15-16(Eng).pdf.

Dirzo, R. and P.H. Raven (2003). Global state of biodiversity  and loss. Annual Review of Environment and Resources,  28: 137-167.

F.S.I. (2015). State of Forest Report 2015. InG. MoEF (Ed.).  Dehradun: Forest Survey of India.

Ghorbani, A. and M. Pakravan (2013). Land use mapping  using visual vs. digital image interpretation of TM and  Google earth derived imagery in Shrivan-Darasi watershed  (Northwest of Iran). European Journal of Experimental  Biology, 3(1): 576-582. 

Gupta, S. and M. Roy (2012). Land Use/Land Cover  classification of an urban area—A case study of Burdwan  Municipality, India. International Journal of Geomatics  and Geosciences, 2(4): 1014-1026.

Halil, I.C., Siamak, K. and A.C.N. Stacy (2006).  Correspondence analysis for detecting land cover change.  Remote Sensing of Environment, 102(3-4): 306-317.

Jaykumar, S. and D. Arockiasamy (2003). Land use land  cover mapping and change detection in part of Eastern  Ghats of Tamil Nadu using Remote Sensing and GIS.  Indian Journal of Remote Sensing, 31(4): 251-260.

Laurance, W.F. and R.O. Bierregaard Jr., editors. 1997.  Tropical forest remnants: Ecology, management, and  conservation of fragmented communities. University of  Chicago Press, Chicago.

Lee, I.S., Shin, D.H, Ahn, S.M., Lee, K.S. and S.W. Jeon  (2002). Comparison of Visual Interpretation and Image  Classification of Satellite Data. Korean Journal of Remote  Sensing, 18(3): 163-169.

Margono, B.A., Turubanova, S., Zhuravleva, I., Potapov, P.,  Tyukavina, A., Baccini, A., Goetz, S. and M.C. Hansen  (2012). Mapping and monitoring deforestation and  forest degradation in Sumatra (Indonesia) using Landsat  time series data sets from 1990 to 2010. Environmental  Research Letters, 7: 034010.

Markham, B.L. and J.L. Barker (1986). Landsat MSS and  TM post-calibration dynamic ranges, exo-atmospheric  reflectances and at-satellite temperatures. EOSAT Landsat  Technical Notes, 1: 3-8.

Nordberg, M.L. and J. Evertson (2004). Monitoring change in  mountainous dry-heath vegetation at a regional scale using  multitemporal Landsat TM data. Ambio, 32(8): 502-509.

Nordberg, M.L. and J. Evertson (2005). Vegetation index  differencing and linear regression for change detection in  a Swedish mountain range using Landsat TM and ETM+  imagery. Land Degradation and Development, 16(2): 139-149.

Pandya, M.R., Singh, R.P., Murali, K.R., Babu, P.N.,  Kirankumar, A.S. and V.K. Dadhwal (2002). Bandpass  solar exo-atmospheric irradiance and Rayleigh optical  thickness of sensors on board Indian Remote Sensing  Satellites-1B, -1C, -1D, and P4, IEEE Transactions  Geoscience and Remote Sensing, 40(3): 714-718.

Pimm, S.L. et al. (2001). Can we defy nature’s end? Science,  293: 2207-2208.

Reddy, C.S., Jha, C.S. and V.K. Dadhwal (2013). Assessment  and monitoring of long-term forest cover changes in  Odisha, India using remote sensing and GIS. Environmental  Monitoring and Assessment, 185(5): 4399-4415

Reddy, C.S., Khuroo, A.A., Harikrishna, P., Saranya, K.R.L.,  Jha, C.S. and V. K. Dadhwal (2014). Threat Evaluation  for Biodiversity Conservation of Forest Ecosystems using  Geospatial techniques: A case study of Odisha, India.  Ecological Engineering, 69: 287-303.

Reddy, C.S., Rao, K.R.M., Pattanaik, C. and P.K. Joshi  (2009). Assessment of large-scale deforestation of  Nawarangpur district, Orissa, India: A remote sensing  based study. Environment Monitoring Assessment, 154:  325-335.

Redowan, M., Akter, S. and N. Islam (2014). Analysis of  forest cover change at Khadimnagar National Park, Sylhet,  Bangladesh, using Landsat TM and GIS data. Journal of  Forestry Research, 25(2): 393-400.

Rouse, J.W., Haas, R.H., Schell, J.A. and D.W. Deering  (1973). Monitoring vegetation systems in the Great Plains  with ERTS. In: 3rd ERTS Symposium, NASA SP-351 I,  pp. 309-317.

Running, S.W., Peterson, D.L., Spanner, M.A. and K.B.  Teubler (1986). Remote sensing of coniferous leaf area.  Ecology, 67: 273-276.

Sanchez-Azofeifa, G.A., Harriss, R.C. and D.L. Skole (2001).  Deforestation in Costa Rica: A quantitative analysis using  remote sensing imagery. Biotropica, 33(3): 378-384.

Saranya, K.R.L. and C.S. Reddy (2016). Long term changes  in forest cover and land use of Similipal Biosphere Reserve  of India using satellite remote sensing data. Journal of  Earth System Science, 125(3): 559-569.

Singh, A. (1989). Digital change detection techniques using  remotely-sensed data. International Journal of Remote  Sensing, 10: 989-1003.

Singh, A. (1986). Change detection in the tropical forest  environment of north-eastern India using Landsat. In: M.J. Eden and J.T. Parry (Eds.), Remote Sensing and  Tropical Land Management. New York, NY: John Wiley  and Sons Ltd.

Singh, P.K., Singh, R. and G. Singh (2010). Impact of coal  mining and industrial activities on land use pattern in  Angul-Talcher region of Orissa, India. International  Journal of Engineering Science and Technology, 2(12): 7771-7784.

Slater, P.N., Doyle, F.J., Fritz, N.L. and R. Welch (1983).  Photographic systems for remote sensing. American  Society of Photogrammetry Second Edition of Manual of  Remote Sensing, 1(6): 231-291.

Sleeter, B.M., Sohl, T.L., Loveland, T.R., Auch, R.F.,  Acevedo, W., Drummond, M.A., Sayler, K.L. and S.V.  Stehman (2013). Land-cover change in the conterminous  United States from 1973 to 2000. Global Environmental  Change, 23(4): 733-748.

Song, C., Woodcock, C.E, Seto, K.C, Lenney, M.P. and A.S.  Macomber (2001). Classification and change detection  using Landsat TMdata: When and how to correct  atmospheric effects. Remote Sensing of Environment, 75: 230-244.

Thandar, S. (2012). Analysis of Spatio-temporal Changes of  Urban Land Use Using Remote Sensing and GIS: A Case  Study of Bhubaneswar City, Odisha. Dagon University  Research Journal, 4: 19-29.

Wasseige, C. de. and P. Defourny (2005). Remote Sensing of  Selective Logging Impact for Tropical Forest Management.  Forest Ecology and Management, 188(1-3): 161-173.

Weier, J. and D. Herring (2011). Measuring Vegetation  (NDVI & EVI). http://earthobservatory.nasa.gov/Features/ MeasuringVegetation/ (Accessed in 23rd September 2018).

Yuan, F., Sawaya, K.E., Loeffelholz, B.C. and M.E. Bauer  (2005). Land cover classification and change analysis  of the Twin Cities (Minnesota) Metropolitan Area by  multitemporal Landsat remote sensing. Remote Sensing  of Environment, 98: 317-328.

Share
Back to top
Asian Journal of Water, Environment and Pollution, Electronic ISSN: 1875-8568 Print ISSN: 0972-9860, Published by AccScience Publishing